Application number | Title of the application | Filing Date | Status |
---|
Array
(
[id] => 17223946
[patent_doc_number] => 11176449
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2021-11-16
[patent_title] => Neural network accelerator hardware-specific division of inference into groups of layers
[patent_app_type] => utility
[patent_app_number] => 17/186003
[patent_app_country] => US
[patent_app_date] => 2021-02-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 13
[patent_no_of_words] => 10257
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 266
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17186003
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/186003 | Neural network accelerator hardware-specific division of inference into groups of layers | Feb 25, 2021 | Issued |
Array
(
[id] => 17195325
[patent_doc_number] => 11164084
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2021-11-02
[patent_title] => Cluster-connected neural network
[patent_app_type] => utility
[patent_app_number] => 17/095154
[patent_app_country] => US
[patent_app_date] => 2020-11-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 6
[patent_no_of_words] => 12311
[patent_no_of_claims] => 30
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 258
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17095154
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/095154 | Cluster-connected neural network | Nov 10, 2020 | Issued |
Array
(
[id] => 16845230
[patent_doc_number] => 11017320
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2021-05-25
[patent_title] => Method for training obfuscation network which conceals original data to be used for machine learning and training surrogate network which uses obfuscated data generated by obfuscation network and learning device using the same and method for testing trained obfuscation network and testing device using the same
[patent_app_type] => utility
[patent_app_number] => 16/911106
[patent_app_country] => US
[patent_app_date] => 2020-06-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 28707
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 642
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16911106
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/911106 | Method for training obfuscation network which conceals original data to be used for machine learning and training surrogate network which uses obfuscated data generated by obfuscation network and learning device using the same and method for testing trained obfuscation network and testing device using the same | Jun 23, 2020 | Issued |
Array
(
[id] => 16845229
[patent_doc_number] => 11017319
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2021-05-25
[patent_title] => Method for training obfuscation network which conceals original data to be used for machine learning and training surrogate network which uses obfuscated data generated by obfuscation network and method for testing trained obfuscation network and learning device and testing device using the same
[patent_app_type] => utility
[patent_app_number] => 16/910021
[patent_app_country] => US
[patent_app_date] => 2020-06-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 15916
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 6
[patent_words_short_claim] => 349
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16910021
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/910021 | Method for training obfuscation network which conceals original data to be used for machine learning and training surrogate network which uses obfuscated data generated by obfuscation network and method for testing trained obfuscation network and learning device and testing device using the same | Jun 22, 2020 | Issued |
Array
(
[id] => 16217695
[patent_doc_number] => 10733512
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2020-08-04
[patent_title] => Cooperative use of a genetic algorithm and an optimization trainer for autoencoder generation
[patent_app_type] => utility
[patent_app_number] => 16/716850
[patent_app_country] => US
[patent_app_date] => 2019-12-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 20
[patent_figures_cnt] => 22
[patent_no_of_words] => 23688
[patent_no_of_claims] => 25
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 195
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16716850
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/716850 | Cooperative use of a genetic algorithm and an optimization trainer for autoencoder generation | Dec 16, 2019 | Issued |
Array
(
[id] => 16033451
[patent_doc_number] => 10679150
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2020-06-09
[patent_title] => Systems and methods for automatically configuring training data for training machine learning models of a machine learning-based dialogue system including seeding training samples or curating a corpus of training data based on instances of training data identified as anomalous
[patent_app_type] => utility
[patent_app_number] => 16/689287
[patent_app_country] => US
[patent_app_date] => 2019-11-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 6
[patent_no_of_words] => 10638
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 358
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16689287
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/689287 | Systems and methods for automatically configuring training data for training machine learning models of a machine learning-based dialogue system including seeding training samples or curating a corpus of training data based on instances of training data identified as anomalous | Nov 19, 2019 | Issued |
Array
(
[id] => 15807067
[patent_doc_number] => 20200126676
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-04-23
[patent_title] => CROSS REFLEXIVITY COGNITIVE METHOD
[patent_app_type] => utility
[patent_app_number] => 16/659303
[patent_app_country] => US
[patent_app_date] => 2019-10-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17683
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 139
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16659303
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/659303 | CROSS REFLEXIVITY COGNITIVE METHOD | Oct 20, 2019 | Abandoned |
Array
(
[id] => 16788467
[patent_doc_number] => 10990902
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-04-27
[patent_title] => Implementing a classification model for recognition processing
[patent_app_type] => utility
[patent_app_number] => 16/582343
[patent_app_country] => US
[patent_app_date] => 2019-09-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 14
[patent_no_of_words] => 11502
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 106
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16582343
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/582343 | Implementing a classification model for recognition processing | Sep 24, 2019 | Issued |
Array
(
[id] => 17062399
[patent_doc_number] => 11107005
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2021-08-31
[patent_title] => Temperature preference learning by suggestion and user acceptance
[patent_app_type] => utility
[patent_app_number] => 16/544230
[patent_app_country] => US
[patent_app_date] => 2019-08-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 6
[patent_no_of_words] => 7752
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 279
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16544230
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/544230 | Temperature preference learning by suggestion and user acceptance | Aug 18, 2019 | Issued |
Array
(
[id] => 15121865
[patent_doc_number] => 20190347566
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-11-14
[patent_title] => PREDICTIVE CONTROLLER FOR APPLICATIONS
[patent_app_type] => utility
[patent_app_number] => 16/524890
[patent_app_country] => US
[patent_app_date] => 2019-07-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11458
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 63
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16524890
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/524890 | Predictive controller adapting application execution to influence user psychological state | Jul 28, 2019 | Issued |
Array
(
[id] => 17180570
[patent_doc_number] => 11157815
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-10-26
[patent_title] => Efficient convolutional neural networks and techniques to reduce associated computational costs
[patent_app_type] => utility
[patent_app_number] => 16/524410
[patent_app_country] => US
[patent_app_date] => 2019-07-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 11
[patent_no_of_words] => 10207
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 170
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16524410
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/524410 | Efficient convolutional neural networks and techniques to reduce associated computational costs | Jul 28, 2019 | Issued |
Array
(
[id] => 15374311
[patent_doc_number] => 10528878
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-01-07
[patent_title] => Tailoring question answering system output based on user experience
[patent_app_type] => utility
[patent_app_number] => 16/524432
[patent_app_country] => US
[patent_app_date] => 2019-07-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 13
[patent_no_of_words] => 16193
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 190
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16524432
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/524432 | Tailoring question answering system output based on user experience | Jul 28, 2019 | Issued |
Array
(
[id] => 16279401
[patent_doc_number] => 10762433
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-09-01
[patent_title] => Distributed relationship reasoning engine for generating hypothesis about relations between aspects of objects in response to an inquiry
[patent_app_type] => utility
[patent_app_number] => 16/512296
[patent_app_country] => US
[patent_app_date] => 2019-07-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 10381
[patent_no_of_claims] => 30
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 201
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16512296
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/512296 | Distributed relationship reasoning engine for generating hypothesis about relations between aspects of objects in response to an inquiry | Jul 14, 2019 | Issued |
Array
(
[id] => 15043897
[patent_doc_number] => 20190332953
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-10-31
[patent_title] => Method for Using Hybrid Data Architecture Within a Cognitive Environment
[patent_app_type] => utility
[patent_app_number] => 16/506078
[patent_app_country] => US
[patent_app_date] => 2019-07-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13940
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16506078
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/506078 | Hybrid data architecture for use within a cognitive environment | Jul 8, 2019 | Issued |
Array
(
[id] => 15183275
[patent_doc_number] => 20190362229
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-11-28
[patent_title] => TRAINING SEQUENCE GENERATION NEURAL NETWORKS USING QUALITY SCORES
[patent_app_type] => utility
[patent_app_number] => 16/421406
[patent_app_country] => US
[patent_app_date] => 2019-05-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6868
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 290
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16421406
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/421406 | Training sequence generation neural networks using quality scores | May 22, 2019 | Issued |
Array
(
[id] => 14720801
[patent_doc_number] => 20190251464
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-08-15
[patent_title] => SYSTEMS AND METHODS FOR AUTOMATIC COHORT MISCONCEPTION REMEDIATION
[patent_app_type] => utility
[patent_app_number] => 16/393837
[patent_app_country] => US
[patent_app_date] => 2019-04-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 34683
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 119
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16393837
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/393837 | SYSTEMS AND METHODS FOR AUTOMATIC COHORT MISCONCEPTION REMEDIATION | Apr 23, 2019 | Abandoned |
Array
(
[id] => 15545987
[patent_doc_number] => 10572778
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2020-02-25
[patent_title] => Machine-learning-based systems and methods for quality detection of digital input
[patent_app_type] => utility
[patent_app_number] => 16/354437
[patent_app_country] => US
[patent_app_date] => 2019-03-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 12426
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 227
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16354437
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/354437 | Machine-learning-based systems and methods for quality detection of digital input | Mar 14, 2019 | Issued |
Array
(
[id] => 16552272
[patent_doc_number] => 10885434
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-01-05
[patent_title] => Alternative loop limits for accessing data in multi-dimensional tensors
[patent_app_type] => utility
[patent_app_number] => 16/297091
[patent_app_country] => US
[patent_app_date] => 2019-03-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 3
[patent_no_of_words] => 8310
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 350
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16297091
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/297091 | Alternative loop limits for accessing data in multi-dimensional tensors | Mar 7, 2019 | Issued |
Array
(
[id] => 14873531
[patent_doc_number] => 20190287007
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-09-19
[patent_title] => MACHINE LEARNING DEVICE, SERVO CONTROL DEVICE, SERVO CONTROL SYSTEM, AND MACHINE LEARNING METHOD
[patent_app_type] => utility
[patent_app_number] => 16/272099
[patent_app_country] => US
[patent_app_date] => 2019-02-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12742
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 175
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16272099
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/272099 | Machine learning device, servo control device, servo control system, and machine learning method for suppressing variation in position error using feedforward control | Feb 10, 2019 | Issued |
Array
(
[id] => 14135003
[patent_doc_number] => 20190101891
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-04-04
[patent_title] => NUMERICAL CONTROL SYSTEM
[patent_app_type] => utility
[patent_app_number] => 16/141133
[patent_app_country] => US
[patent_app_date] => 2018-09-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7704
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -8
[patent_words_short_claim] => 114
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16141133
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/141133 | Numerical control system that detects an abnormality in an operation state | Sep 24, 2018 | Issued |