Application number | Title of the application | Filing Date | Status |
---|
Array
(
[id] => 17885309
[patent_doc_number] => 20220300786
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-09-22
[patent_title] => AUDIO-VISUAL ACTIVITY SAFETY RECOMMENDATION WITH CONTEXT-AWARE RISK PROPORTIONAL PERSONALIZED FEEDBACK
[patent_app_type] => utility
[patent_app_number] => 17/207635
[patent_app_country] => US
[patent_app_date] => 2021-03-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7645
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 114
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17207635
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/207635 | AUDIO-VISUAL ACTIVITY SAFETY RECOMMENDATION WITH CONTEXT-AWARE RISK PROPORTIONAL PERSONALIZED FEEDBACK | Mar 19, 2021 | Pending |
Array
(
[id] => 17885545
[patent_doc_number] => 20220301022
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-09-22
[patent_title] => METHODS AND SYSTEMS FOR GENERATING REAL-TIME RECOMMENDATIONS USING MACHINE LEARNING MODELS
[patent_app_type] => utility
[patent_app_number] => 17/207569
[patent_app_country] => US
[patent_app_date] => 2021-03-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15495
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 217
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17207569
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/207569 | METHODS AND SYSTEMS FOR GENERATING REAL-TIME RECOMMENDATIONS USING MACHINE LEARNING MODELS | Mar 18, 2021 | Pending |
Array
(
[id] => 17084570
[patent_doc_number] => 20210279577
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-09-09
[patent_title] => Testing of Computing Processes Using Artificial Intelligence
[patent_app_type] => utility
[patent_app_number] => 17/192651
[patent_app_country] => US
[patent_app_date] => 2021-03-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16454
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -27
[patent_words_short_claim] => 120
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17192651
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/192651 | Testing of Computing Processes Using Artificial Intelligence | Mar 3, 2021 | Pending |
Array
(
[id] => 17839888
[patent_doc_number] => 20220277193
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-09-01
[patent_title] => GROUND TRUTH DATA GENERATION FOR DEEP NEURAL NETWORK PERCEPTION IN AUTONOMOUS DRIVING APPLICATIONS
[patent_app_type] => utility
[patent_app_number] => 17/187350
[patent_app_country] => US
[patent_app_date] => 2021-02-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 28001
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 156
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17187350
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/187350 | GROUND TRUTH DATA GENERATION FOR DEEP NEURAL NETWORK PERCEPTION IN AUTONOMOUS DRIVING APPLICATIONS | Feb 25, 2021 | Pending |
Array
(
[id] => 17779153
[patent_doc_number] => 20220245503
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-08-04
[patent_title] => TRAINING A POLICY MODEL FOR A ROBOTIC TASK, USING REINFORCEMENT LEARNING AND UTILIZING DATA THAT IS BASED ON EPISODES, OF THE ROBOTIC TASK, GUIDED BY AN ENGINEERED POLICY
[patent_app_type] => utility
[patent_app_number] => 17/161845
[patent_app_country] => US
[patent_app_date] => 2021-01-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12955
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 163
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17161845
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/161845 | TRAINING A POLICY MODEL FOR A ROBOTIC TASK, USING REINFORCEMENT LEARNING AND UTILIZING DATA THAT IS BASED ON EPISODES, OF THE ROBOTIC TASK, GUIDED BY AN ENGINEERED POLICY | Jan 28, 2021 | Pending |
Array
(
[id] => 17779075
[patent_doc_number] => 20220245425
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-08-04
[patent_title] => KNOWLEDGE GRAPH EMBEDDING USING GRAPH CONVOLUTIONAL NETWORKS WITH RELATION-AWARE ATTENTION
[patent_app_type] => utility
[patent_app_number] => 17/161933
[patent_app_country] => US
[patent_app_date] => 2021-01-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6745
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 84
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17161933
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/161933 | KNOWLEDGE GRAPH EMBEDDING USING GRAPH CONVOLUTIONAL NETWORKS WITH RELATION-AWARE ATTENTION | Jan 28, 2021 | Pending |
Array
(
[id] => 16827614
[patent_doc_number] => 20210142907
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-13
[patent_title] => System for Surgical Decisions Using Deep Learning
[patent_app_type] => utility
[patent_app_number] => 17/156705
[patent_app_country] => US
[patent_app_date] => 2021-01-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8111
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 136
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17156705
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/156705 | System for Surgical Decisions Using Deep Learning | Jan 24, 2021 | Pending |
Array
(
[id] => 16980358
[patent_doc_number] => 20210224595
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-07-22
[patent_title] => COMPUTER IMPLEMENTED METHOD AND DEVICE FOR CLASSIFYING DATA
[patent_app_type] => utility
[patent_app_number] => 17/143025
[patent_app_country] => US
[patent_app_date] => 2021-01-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3679
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 161
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17143025
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/143025 | COMPUTER IMPLEMENTED METHOD AND DEVICE FOR CLASSIFYING DATA | Jan 5, 2021 | Pending |
Array
(
[id] => 17690970
[patent_doc_number] => 20220198263
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-06-23
[patent_title] => TIME SERIES ANOMALY DETECTION
[patent_app_type] => utility
[patent_app_number] => 17/133222
[patent_app_country] => US
[patent_app_date] => 2020-12-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10074
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 200
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17133222
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/133222 | TIME SERIES ANOMALY DETECTION | Dec 22, 2020 | Pending |
Array
(
[id] => 17302136
[patent_doc_number] => 20210397975
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-12-23
[patent_title] => PERFORMING HYPERPARAMETER TUNING OF MODELS IN A MASSIVELY PARALLEL DATABASE SYSTEM
[patent_app_type] => utility
[patent_app_number] => 17/124200
[patent_app_country] => US
[patent_app_date] => 2020-12-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5907
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 110
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17124200
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/124200 | PERFORMING HYPERPARAMETER TUNING OF MODELS IN A MASSIVELY PARALLEL DATABASE SYSTEM | Dec 15, 2020 | Pending |
Array
(
[id] => 17023968
[patent_doc_number] => 20210247839
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-08-12
[patent_title] => ON-CHIP VOLTAGE ASSIGNMENT THROUGH PARTICLE SWARM OPTIMIZATION
[patent_app_type] => utility
[patent_app_number] => 17/271121
[patent_app_country] => US
[patent_app_date] => 2019-09-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13562
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 73
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17271121
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/271121 | ON-CHIP VOLTAGE ASSIGNMENT THROUGH PARTICLE SWARM OPTIMIZATION | Sep 2, 2019 | Pending |
Array
(
[id] => 17040431
[patent_doc_number] => 20210257067
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-08-19
[patent_title] => STATE TRANSITION PREDICTION DEVICE, AND DEVICE, METHOD, AND PROGRAM FOR LEARNING PREDICTIVE MODEL
[patent_app_type] => utility
[patent_app_number] => 17/271177
[patent_app_country] => US
[patent_app_date] => 2019-08-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7163
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -3
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17271177
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/271177 | STATE TRANSITION PREDICTION DEVICE, AND DEVICE, METHOD, AND PROGRAM FOR LEARNING PREDICTIVE MODEL | Aug 21, 2019 | Pending |
Array
(
[id] => 17054837
[patent_doc_number] => 20210264271
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-08-26
[patent_title] => ADAPTABLE NEURAL NETWORK
[patent_app_type] => utility
[patent_app_number] => 17/260258
[patent_app_country] => US
[patent_app_date] => 2019-08-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8281
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 123
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17260258
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/260258 | ADAPTABLE NEURAL NETWORK | Aug 19, 2019 | Pending |