Sophia S Chen
Examiner (ID: 6007, Phone: (571)272-2133 , Office: P/2852 )
Most Active Art Unit | 2852 |
Art Unit(s) | 2852, 2809, 2105 |
Total Applications | 3496 |
Issued Applications | 3316 |
Pending Applications | 72 |
Abandoned Applications | 108 |
Applications
Application number | Title of the application | Filing Date | Status |
---|---|---|---|
Array
(
[id] => 18903011
[patent_doc_number] => 20240018496
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-01-18
[patent_title] => Compositions and Methods for Kallikrein (KLKB1) Gene Editing
[patent_app_type] => utility
[patent_app_number] => 18/362675
[patent_app_country] => US
[patent_app_date] => 2023-07-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 55836
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -28
[patent_words_short_claim] => 34
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18362675
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/362675 | Compositions and Methods for Kallikrein (KLKB1) Gene Editing | Jul 30, 2023 | Pending |
Array
(
[id] => 17897377
[patent_doc_number] => 20220307039
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-09-29
[patent_title] => CODON-OPTIMIZED NUCLEOTIDE SEQUENCES ENCODING AN AP-1 TRANSCRIPTION FACTOR
[patent_app_type] => utility
[patent_app_number] => 17/679977
[patent_app_country] => US
[patent_app_date] => 2022-02-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 30725
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17679977
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/679977 | CODON-OPTIMIZED NUCLEOTIDE SEQUENCES ENCODING AN AP-1 TRANSCRIPTION FACTOR | Feb 23, 2022 | Pending |
Array
(
[id] => 18242424
[patent_doc_number] => 20230074735
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-03-09
[patent_title] => METAL ION-START DNA POLYMERASE SWITCH AND ISOTHERMAL POLYMERASE AMPLIFICATION METHOD USING THE SAME
[patent_app_type] => utility
[patent_app_number] => 17/675229
[patent_app_country] => US
[patent_app_date] => 2022-02-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6027
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -7
[patent_words_short_claim] => 44
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17675229
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/675229 | Metal ion-start DNA polymerase switch and isothermal polymerase amplification method using the same | Feb 17, 2022 | Issued |
Array
(
[id] => 17759964
[patent_doc_number] => 20220233576
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-07-28
[patent_title] => SOLUTE CARRIER FAMILY 46 MEMBER 3 (SLC46A3) AS MARKER FOR LIPID-BASED NANOPARTICLE CANCER THERAPY AND DIAGNOSTICS
[patent_app_type] => utility
[patent_app_number] => 17/582594
[patent_app_country] => US
[patent_app_date] => 2022-01-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16901
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17582594
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/582594 | SOLUTE CARRIER FAMILY 46 MEMBER 3 (SLC46A3) AS MARKER FOR LIPID-BASED NANOPARTICLE CANCER THERAPY AND DIAGNOSTICS | Jan 23, 2022 | Pending |
Array
(
[id] => 17052527
[patent_doc_number] => 20210261961
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-08-26
[patent_title] => ANTISENSE OLIGONUCLEOTIDES TARGETING TIA1
[patent_app_type] => utility
[patent_app_number] => 17/245443
[patent_app_country] => US
[patent_app_date] => 2021-04-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16194
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -23
[patent_words_short_claim] => 67
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17245443
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/245443 | ANTISENSE OLIGONUCLEOTIDES TARGETING TIA1 | Apr 29, 2021 | Pending |
Array
(
[id] => 17200435
[patent_doc_number] => 20210340530
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-11-04
[patent_title] => Compositions and Methods for Immunotherapy
[patent_app_type] => utility
[patent_app_number] => 17/231556
[patent_app_country] => US
[patent_app_date] => 2021-04-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 46519
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17231556
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/231556 | Compositions and Methods for Immunotherapy | Apr 14, 2021 | Pending |
Array
(
[id] => 17258876
[patent_doc_number] => 20210371861
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-12-02
[patent_title] => Multi-Targeting Nucleic Acid Constructs Composed Of Multiple Oligonucleotides That Modulate Gene Expression Through Complimentary Interactions With Targets
[patent_app_type] => utility
[patent_app_number] => 17/215964
[patent_app_country] => US
[patent_app_date] => 2021-03-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8440
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -73
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17215964
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/215964 | Multi-Targeting Nucleic Acid Constructs Composed Of Multiple Oligonucleotides That Modulate Gene Expression Through Complimentary Interactions With Targets | Mar 28, 2021 | Pending |
Array
(
[id] => 16977936
[patent_doc_number] => 20210222173
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-07-22
[patent_title] => Compositions and Methods for Lactate Dehydrogenase (LDHA) Gene Editing
[patent_app_type] => utility
[patent_app_number] => 17/212901
[patent_app_country] => US
[patent_app_date] => 2021-03-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 39542
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -193
[patent_words_short_claim] => 21
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17212901
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/212901 | Compositions and Methods for Lactate Dehydrogenase (LDHA) Gene Editing | Mar 24, 2021 | Pending |
Array
(
[id] => 17299896
[patent_doc_number] => 20210395735
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-12-23
[patent_title] => COMPLEMENT COMPONENT C5 iRNA COMPOSITIONS AND METHODS OF USE
[patent_app_type] => utility
[patent_app_number] => 17/204008
[patent_app_country] => US
[patent_app_date] => 2021-03-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11422
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17204008
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/204008 | COMPLEMENT COMPONENT C5 iRNA COMPOSITIONS AND METHODS OF USE | Mar 16, 2021 | Pending |
Array
(
[id] => 17183928
[patent_doc_number] => 20210330813
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-10-28
[patent_title] => RNAI INDUCED C9ORF72 SUPPRESSION FOR THE TREATMENT OF ALS/FTD
[patent_app_type] => utility
[patent_app_number] => 17/196531
[patent_app_country] => US
[patent_app_date] => 2021-03-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24079
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 68
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17196531
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/196531 | RNAI INDUCED C9ORF72 SUPPRESSION FOR THE TREATMENT OF ALS/FTD | Mar 8, 2021 | Pending |
Array
(
[id] => 17946104
[patent_doc_number] => 20220333121
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-10-20
[patent_title] => TRANSLATION ENHANCER, TEMPLATE NUCLEIC ACID, PRODUCTION METHOD OF TRANSLATION TEMPLATE, AND PRODUCTION METHOD OF PROTEIN
[patent_app_type] => utility
[patent_app_number] => 17/269186
[patent_app_country] => US
[patent_app_date] => 2020-09-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6220
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 100
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17269186
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/269186 | TRANSLATION ENHANCER, TEMPLATE NUCLEIC ACID, PRODUCTION METHOD OF TRANSLATION TEMPLATE, AND PRODUCTION METHOD OF PROTEIN | Sep 23, 2020 | Pending |
Array
(
[id] => 17399921
[patent_doc_number] => 20220042011
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-10
[patent_title] => ANTISENSE OLIGONUCLEOTIDES TARGETING CARD9
[patent_app_type] => utility
[patent_app_number] => 17/311175
[patent_app_country] => US
[patent_app_date] => 2019-12-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 23194
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 64
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17311175
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/311175 | ANTISENSE OLIGONUCLEOTIDES TARGETING CARD9 | Dec 19, 2019 | Pending |
Array
(
[id] => 17357110
[patent_doc_number] => 20220017906
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-01-20
[patent_title] => RNAI CONSTRUCTS FOR INHIBITING PNPLA3 EXPRESSION AND METHODS OF USE THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/312721
[patent_app_country] => US
[patent_app_date] => 2019-12-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 45274
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17312721
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/312721 | RNAI CONSTRUCTS FOR INHIBITING PNPLA3 EXPRESSION AND METHODS OF USE THEREOF | Dec 9, 2019 | Pending |
Array
(
[id] => 17414348
[patent_doc_number] => 20220049252
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-17
[patent_title] => CHEMICALLY-MODIFIED RNAi CONSTRUCTS AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/312383
[patent_app_country] => US
[patent_app_date] => 2019-12-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 32470
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -67
[patent_words_short_claim] => 225
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17312383
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/312383 | CHEMICALLY-MODIFIED RNAi CONSTRUCTS AND USES THEREOF | Dec 8, 2019 | Pending |
Array
(
[id] => 17355359
[patent_doc_number] => 20220016155
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-01-20
[patent_title] => Composition for Inhibiting Replication of Hepatitis B Virus
[patent_app_type] => utility
[patent_app_number] => 17/294171
[patent_app_country] => US
[patent_app_date] => 2019-11-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5164
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 32
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17294171
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/294171 | Composition for Inhibiting Replication of Hepatitis B Virus | Nov 15, 2019 | Pending |
Array
(
[id] => 17733277
[patent_doc_number] => 20220218736
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-07-14
[patent_title] => NEW THERAPY
[patent_app_type] => utility
[patent_app_number] => 17/290582
[patent_app_country] => US
[patent_app_date] => 2019-11-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13746
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17290582
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/290582 | NEW THERAPY | Nov 13, 2019 | Pending |
Array
(
[id] => 17444135
[patent_doc_number] => 20220064640
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-03-03
[patent_title] => DOUBLE-STRANDED NUCLEIC ACID INHIBITOR MOLECULES CONTAINING A TRILOOP
[patent_app_type] => utility
[patent_app_number] => 17/311949
[patent_app_country] => US
[patent_app_date] => 2019-11-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19257
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -28
[patent_words_short_claim] => 109
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17311949
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/311949 | DOUBLE-STRANDED NUCLEIC ACID INHIBITOR MOLECULES CONTAINING A TRILOOP | Nov 12, 2019 | Pending |
Array
(
[id] => 17200473
[patent_doc_number] => 20210340568
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-11-04
[patent_title] => REGULATED GENE EDITING SYSTEM
[patent_app_type] => utility
[patent_app_number] => 17/283322
[patent_app_country] => US
[patent_app_date] => 2019-10-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 33392
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17283322
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/283322 | REGULATED GENE EDITING SYSTEM | Oct 8, 2019 | Pending |
Array
(
[id] => 17228937
[patent_doc_number] => 20210355493
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-11-18
[patent_title] => OLIGONUCLEOTIDE MEDIATED NO-GO DECAY
[patent_app_type] => utility
[patent_app_number] => 17/282340
[patent_app_country] => US
[patent_app_date] => 2019-10-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19539
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -81
[patent_words_short_claim] => 42
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17282340
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/282340 | OLIGONUCLEOTIDE MEDIATED NO-GO DECAY | Oct 3, 2019 | Pending |
Array
(
[id] => 18194491
[patent_doc_number] => 20230048010
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-02-16
[patent_title] => CELLULAR REPROGRAMMING TO REVERSE AGING AND PROMOTE ORGAN AND TISSUE REGENERATION
[patent_app_type] => utility
[patent_app_number] => 17/280384
[patent_app_country] => US
[patent_app_date] => 2019-09-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 80761
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -49
[patent_words_short_claim] => 21
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17280384
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/280384 | CELLULAR REPROGRAMMING TO REVERSE AGING AND PROMOTE ORGAN AND TISSUE REGENERATION | Sep 26, 2019 | Pending |