Ajay M Bhatia
Supervisory Patent Examiner (ID: 7035, Phone: (571)272-3906 , Office: P/2142 )
Most Active Art Unit | 2445 |
Art Unit(s) | 2156, 2445, 2117, 2142, 2145 |
Total Applications | 280 |
Issued Applications | 139 |
Pending Applications | 21 |
Abandoned Applications | 120 |
Applications
Application number | Title of the application | Filing Date | Status |
---|---|---|---|
Array
(
[id] => 16206964
[patent_doc_number] => 20200239954
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-07-30
[patent_title] => SEQUENCING KITS
[patent_app_type] => utility
[patent_app_number] => 16/750897
[patent_app_country] => US
[patent_app_date] => 2020-01-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 21293
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 62
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16750897
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/750897 | Sequencing kits | Jan 22, 2020 | Issued |
Array
(
[id] => 16206964
[patent_doc_number] => 20200239954
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-07-30
[patent_title] => SEQUENCING KITS
[patent_app_type] => utility
[patent_app_number] => 16/750897
[patent_app_country] => US
[patent_app_date] => 2020-01-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 21293
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 62
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16750897
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/750897 | Sequencing kits | Jan 22, 2020 | Issued |
Array
(
[id] => 17681170
[patent_doc_number] => 11365411
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-06-21
[patent_title] => Efficient random access to DNA-encoded data
[patent_app_type] => utility
[patent_app_number] => 16/748774
[patent_app_country] => US
[patent_app_date] => 2020-01-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 11372
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 107
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16748774
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/748774 | Efficient random access to DNA-encoded data | Jan 20, 2020 | Issued |
Array
(
[id] => 16177313
[patent_doc_number] => 20200224281
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-07-16
[patent_title] => METHOD FOR BREAST CANCER RECURRENCE PREDICTION UNDER ENDOCRINE TREATMENT
[patent_app_type] => utility
[patent_app_number] => 16/746334
[patent_app_country] => US
[patent_app_date] => 2020-01-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12376
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16746334
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/746334 | Method for breast cancer recurrence prediction under endocrine treatment | Jan 16, 2020 | Issued |
Array
(
[id] => 16376672
[patent_doc_number] => 20200325514
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-10-15
[patent_title] => HIGH EFFICIENCY, SMALL VOLUME NUCLEIC ACID SYNTHESIS
[patent_app_type] => utility
[patent_app_number] => 16/736258
[patent_app_country] => US
[patent_app_date] => 2020-01-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 44958
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 147
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16736258
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/736258 | HIGH EFFICIENCY, SMALL VOLUME NUCLEIC ACID SYNTHESIS | Jan 6, 2020 | Abandoned |
Array
(
[id] => 15800925
[patent_doc_number] => 20200123605
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-04-23
[patent_title] => SEQUENCING BY SYNTHESIS USING PULSE READ OPTICS
[patent_app_type] => utility
[patent_app_number] => 16/724574
[patent_app_country] => US
[patent_app_date] => 2019-12-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7016
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 180
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16724574
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/724574 | SEQUENCING BY SYNTHESIS USING PULSE READ OPTICS | Dec 22, 2019 | Abandoned |
Array
(
[id] => 16091181
[patent_doc_number] => 20200199577
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-06-25
[patent_title] => Target Enrichment
[patent_app_type] => utility
[patent_app_number] => 16/721395
[patent_app_country] => US
[patent_app_date] => 2019-12-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10797
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 136
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16721395
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/721395 | Target enrichment | Dec 18, 2019 | Issued |
Array
(
[id] => 18507393
[patent_doc_number] => 11705218
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-07-18
[patent_title] => Nucleic acid analysis method, nucleic acid analysis program, and device for library preparation
[patent_app_type] => utility
[patent_app_number] => 16/718390
[patent_app_country] => US
[patent_app_date] => 2019-12-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 37
[patent_figures_cnt] => 37
[patent_no_of_words] => 38993
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 409
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16718390
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/718390 | Nucleic acid analysis method, nucleic acid analysis program, and device for library preparation | Dec 17, 2019 | Issued |
Array
(
[id] => 18029174
[patent_doc_number] => 11512349
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-11-29
[patent_title] => Methods for detecting disease using analysis of RNA
[patent_app_type] => utility
[patent_app_number] => 16/719882
[patent_app_country] => US
[patent_app_date] => 2019-12-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 29
[patent_figures_cnt] => 29
[patent_no_of_words] => 37122
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 86
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16719882
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/719882 | Methods for detecting disease using analysis of RNA | Dec 17, 2019 | Issued |
Array
(
[id] => 18329536
[patent_doc_number] => 11634765
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-04-25
[patent_title] => Methods and compositions for paired end sequencing using a single surface primer
[patent_app_type] => utility
[patent_app_number] => 16/717303
[patent_app_country] => US
[patent_app_date] => 2019-12-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 13
[patent_no_of_words] => 22250
[patent_no_of_claims] => 30
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 317
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16717303
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/717303 | Methods and compositions for paired end sequencing using a single surface primer | Dec 16, 2019 | Issued |
Array
(
[id] => 16013649
[patent_doc_number] => 20200181667
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-06-11
[patent_title] => METHODS FOR SEAMLESS NUCLEIC ACID ASSEMBLY
[patent_app_type] => utility
[patent_app_number] => 16/712678
[patent_app_country] => US
[patent_app_date] => 2019-12-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16904
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16712678
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/712678 | Methods for seamless nucleic acid assembly | Dec 11, 2019 | Issued |
Array
(
[id] => 17453245
[patent_doc_number] => 11268091
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-03-08
[patent_title] => Direct oligonucleotide synthesis on cells and biomolecules
[patent_app_type] => utility
[patent_app_number] => 16/970590
[patent_app_country] => US
[patent_app_date] => 2019-12-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 19
[patent_figures_cnt] => 21
[patent_no_of_words] => 21513
[patent_no_of_claims] => 7
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 122
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16970590
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/970590 | Direct oligonucleotide synthesis on cells and biomolecules | Dec 9, 2019 | Issued |
Array
(
[id] => 16735938
[patent_doc_number] => 10961576
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-03-30
[patent_title] => Hybrid nanopore sensors
[patent_app_type] => utility
[patent_app_number] => 16/707554
[patent_app_country] => US
[patent_app_date] => 2019-12-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 18
[patent_no_of_words] => 12625
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 161
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16707554
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/707554 | Hybrid nanopore sensors | Dec 8, 2019 | Issued |
Array
(
[id] => 18643497
[patent_doc_number] => 11767558
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-09-26
[patent_title] => Adding nucleotides during sequence detection
[patent_app_type] => utility
[patent_app_number] => 16/704345
[patent_app_country] => US
[patent_app_date] => 2019-12-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 15
[patent_no_of_words] => 12430
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 387
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16704345
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/704345 | Adding nucleotides during sequence detection | Dec 4, 2019 | Issued |
Array
(
[id] => 16222791
[patent_doc_number] => 20200247907
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-08-06
[patent_title] => METHODS FOR PHRASING EPIGENETIC MODIFICATIONS OF GENOMES
[patent_app_type] => utility
[patent_app_number] => 16/703396
[patent_app_country] => US
[patent_app_date] => 2019-12-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22885
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16703396
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/703396 | METHODS FOR PHRASING EPIGENETIC MODIFICATIONS OF GENOMES | Dec 3, 2019 | Abandoned |
Array
(
[id] => 16642431
[patent_doc_number] => 10920272
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-02-16
[patent_title] => High-throughput method for characterizing the genome-wide activity of editing nucleases in vitro
[patent_app_type] => utility
[patent_app_number] => 16/695719
[patent_app_country] => US
[patent_app_date] => 2019-11-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 65
[patent_figures_cnt] => 66
[patent_no_of_words] => 8573
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 130
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16695719
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/695719 | High-throughput method for characterizing the genome-wide activity of editing nucleases in vitro | Nov 25, 2019 | Issued |
Array
(
[id] => 15994055
[patent_doc_number] => 20200172898
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-06-04
[patent_title] => HIGH EFFICIENCY, SMALL VOLUME NUCLEIC ACID SYNTHESIS
[patent_app_type] => utility
[patent_app_number] => 16/678576
[patent_app_country] => US
[patent_app_date] => 2019-11-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 37322
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16678576
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/678576 | High efficiency, small volume nucleic acid synthesis | Nov 7, 2019 | Issued |
Array
(
[id] => 16422252
[patent_doc_number] => 20200347450
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-05
[patent_title] => Parallel Polymer Sequencing Methods
[patent_app_type] => utility
[patent_app_number] => 16/675738
[patent_app_country] => US
[patent_app_date] => 2019-11-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 25854
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16675738
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/675738 | Parallel Polymer Sequencing Methods | Nov 5, 2019 | Abandoned |
Array
(
[id] => 16013525
[patent_doc_number] => 20200181605
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-06-11
[patent_title] => HIGH-THROUGHPUT PROTEIN ANALYSIS METHOD AND SUITABLE LIBRARY THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/670813
[patent_app_country] => US
[patent_app_date] => 2019-10-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12991
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 110
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16670813
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/670813 | HIGH-THROUGHPUT PROTEIN ANALYSIS METHOD AND SUITABLE LIBRARY THEREOF | Oct 30, 2019 | Abandoned |
Array
(
[id] => 15497037
[patent_doc_number] => 20200048707
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-02-13
[patent_title] => COMPOSITIONS AND METHODS FOR ACCURATELY IDENTIFYING MUTATIONS
[patent_app_type] => utility
[patent_app_number] => 16/657898
[patent_app_country] => US
[patent_app_date] => 2019-10-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10856
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16657898
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/657898 | COMPOSITIONS AND METHODS FOR ACCURATELY IDENTIFYING MUTATIONS | Oct 17, 2019 | Abandoned |