
Alan S. Chen
Examiner (ID: 6684)
| Most Active Art Unit | 2182 |
| Art Unit(s) | 2182, 2124, 2129, 2125 |
| Total Applications | 1711 |
| Issued Applications | 1472 |
| Pending Applications | 104 |
| Abandoned Applications | 172 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 18422941
[patent_doc_number] => 20230177405
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-08
[patent_title] => ENSEMBLE OF NARROW AI AGENTS
[patent_app_type] => utility
[patent_app_number] => 17/755822
[patent_app_country] => US
[patent_app_date] => 2020-11-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4496
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -24
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17755822
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/755822 | ENSEMBLE OF NARROW AI AGENTS | Nov 8, 2020 | Pending |
Array
(
[id] => 19732942
[patent_doc_number] => 12210940
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2025-01-28
[patent_title] => On-circuit activity monitoring for modifying integrated circuit processing
[patent_app_type] => utility
[patent_app_number] => 17/091853
[patent_app_country] => US
[patent_app_date] => 2020-11-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 20
[patent_figures_cnt] => 22
[patent_no_of_words] => 15975
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 136
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17091853
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/091853 | On-circuit activity monitoring for modifying integrated circuit processing | Nov 5, 2020 | Issued |
Array
(
[id] => 16659703
[patent_doc_number] => 20210056340
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-02-25
[patent_title] => OBJECT RECOGNITION BASED ON HIERARCHICAL DOMAIN-BASED MODELS
[patent_app_type] => utility
[patent_app_number] => 17/089819
[patent_app_country] => US
[patent_app_date] => 2020-11-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9094
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 141
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17089819
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/089819 | Object recognition based on hierarchical domain-based models | Nov 4, 2020 | Issued |
Array
(
[id] => 19340791
[patent_doc_number] => 12050984
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-07-30
[patent_title] => Specialized fixed function hardware for efficient convolution
[patent_app_type] => utility
[patent_app_number] => 17/083080
[patent_app_country] => US
[patent_app_date] => 2020-10-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 47
[patent_figures_cnt] => 49
[patent_no_of_words] => 33347
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 133
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17083080
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/083080 | Specialized fixed function hardware for efficient convolution | Oct 27, 2020 | Issued |
Array
(
[id] => 19228805
[patent_doc_number] => 12008443
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-06-11
[patent_title] => Method and apparatus with ciphertext training analysis model
[patent_app_type] => utility
[patent_app_number] => 17/081519
[patent_app_country] => US
[patent_app_date] => 2020-10-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 5
[patent_no_of_words] => 3301
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 79
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17081519
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/081519 | Method and apparatus with ciphertext training analysis model | Oct 26, 2020 | Issued |
Array
(
[id] => 18607127
[patent_doc_number] => 11748595
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-09-05
[patent_title] => Convolution acceleration operation method and apparatus, storage medium and terminal device
[patent_app_type] => utility
[patent_app_number] => 17/623886
[patent_app_country] => US
[patent_app_date] => 2020-10-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 6
[patent_no_of_words] => 8456
[patent_no_of_claims] => 7
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 429
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17623886
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/623886 | Convolution acceleration operation method and apparatus, storage medium and terminal device | Oct 26, 2020 | Issued |
Array
(
[id] => 19459431
[patent_doc_number] => 12099925
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2024-09-24
[patent_title] => Training and/or utilizing recurrent neural network model to determine subsequent source(s) for electronic resource interaction
[patent_app_type] => utility
[patent_app_number] => 17/072592
[patent_app_country] => US
[patent_app_date] => 2020-10-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 13
[patent_no_of_words] => 12856
[patent_no_of_claims] => 9
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 200
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17072592
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/072592 | Training and/or utilizing recurrent neural network model to determine subsequent source(s) for electronic resource interaction | Oct 15, 2020 | Issued |
Array
(
[id] => 16600378
[patent_doc_number] => 20210026909
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-01-28
[patent_title] => SYSTEM AND METHOD FOR IDENTIFYING CONTACTS OF A TARGET USER IN A SOCIAL NETWORK
[patent_app_type] => utility
[patent_app_number] => 17/069166
[patent_app_country] => US
[patent_app_date] => 2020-10-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4781
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 161
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17069166
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/069166 | SYSTEM AND METHOD FOR IDENTIFYING CONTACTS OF A TARGET USER IN A SOCIAL NETWORK | Oct 12, 2020 | Abandoned |
Array
(
[id] => 16600652
[patent_doc_number] => 20210027183
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-01-28
[patent_title] => SYSTEM AND METHOD FOR PERFORMANCE EVALUATION OF PROBABILITY FORECAST
[patent_app_type] => utility
[patent_app_number] => 17/066695
[patent_app_country] => US
[patent_app_date] => 2020-10-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5109
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 47
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17066695
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/066695 | SYSTEM AND METHOD FOR PERFORMANCE EVALUATION OF PROBABILITY FORECAST | Oct 8, 2020 | Abandoned |
Array
(
[id] => 18644996
[patent_doc_number] => 11769070
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-09-26
[patent_title] => Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems
[patent_app_type] => utility
[patent_app_number] => 17/767247
[patent_app_country] => US
[patent_app_date] => 2020-10-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 15
[patent_no_of_words] => 31759
[patent_no_of_claims] => 31
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 250
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17767247
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/767247 | Quantum computing based hybrid solution strategies for large-scale discrete-continuous optimization problems | Oct 8, 2020 | Issued |
Array
(
[id] => 19327635
[patent_doc_number] => 12045319
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-07-23
[patent_title] => First-order logical neural networks with bidirectional inference
[patent_app_type] => utility
[patent_app_number] => 17/063899
[patent_app_country] => US
[patent_app_date] => 2020-10-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 15
[patent_no_of_words] => 31682
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 137
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17063899
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/063899 | First-order logical neural networks with bidirectional inference | Oct 5, 2020 | Issued |
Array
(
[id] => 17522316
[patent_doc_number] => 20220108165
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-04-07
[patent_title] => QUANTIFYING REWARD AND RESOURCE ALLOCATION FOR CONCURRENT PARTIAL DEEP LEARNING WORKLOADS IN MULTI CORE ENVIRONMENTS
[patent_app_type] => utility
[patent_app_number] => 17/062444
[patent_app_country] => US
[patent_app_date] => 2020-10-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8388
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 62
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17062444
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/062444 | Quantifying reward and resource allocation for concurrent partial deep learning workloads in multi core environments | Oct 1, 2020 | Issued |
Array
(
[id] => 17129302
[patent_doc_number] => 20210304071
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-09-30
[patent_title] => SYSTEMS AND METHODS FOR GENERATING MACHINE LEARNING APPLICATIONS
[patent_app_type] => utility
[patent_app_number] => 17/037292
[patent_app_country] => US
[patent_app_date] => 2020-09-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9775
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 321
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17037292
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/037292 | SYSTEMS AND METHODS FOR GENERATING MACHINE LEARNING APPLICATIONS | Sep 28, 2020 | Abandoned |
Array
(
[id] => 18890270
[patent_doc_number] => 11869044
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-01-09
[patent_title] => Methods and system to compare different options in a decision making process
[patent_app_type] => utility
[patent_app_number] => 17/035613
[patent_app_country] => US
[patent_app_date] => 2020-09-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 25
[patent_figures_cnt] => 28
[patent_no_of_words] => 19187
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 138
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17035613
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/035613 | Methods and system to compare different options in a decision making process | Sep 27, 2020 | Issued |
Array
(
[id] => 18547579
[patent_doc_number] => 11720934
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-08-08
[patent_title] => System, method and computer program product for interfacing a decision engine and marketing engine
[patent_app_type] => utility
[patent_app_number] => 17/035603
[patent_app_country] => US
[patent_app_date] => 2020-09-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 25
[patent_figures_cnt] => 28
[patent_no_of_words] => 19183
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 144
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17035603
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/035603 | System, method and computer program product for interfacing a decision engine and marketing engine | Sep 27, 2020 | Issued |
Array
(
[id] => 17508078
[patent_doc_number] => 20220101181
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-03-31
[patent_title] => DETECTION OF ONSETS AND TERMINATIONS USING SPARSE CENSORED TIME SERIES
[patent_app_type] => utility
[patent_app_number] => 17/034914
[patent_app_country] => US
[patent_app_date] => 2020-09-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3971
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 86
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17034914
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/034914 | DETECTION OF ONSETS AND TERMINATIONS USING SPARSE CENSORED TIME SERIES | Sep 27, 2020 | Abandoned |
Array
(
[id] => 18998281
[patent_doc_number] => 11915130
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-02-27
[patent_title] => Mitigating delusional bias in deep Q-learning for robotic and/or other agents
[patent_app_type] => utility
[patent_app_number] => 17/033144
[patent_app_country] => US
[patent_app_date] => 2020-09-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 10
[patent_no_of_words] => 12873
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 135
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17033144
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/033144 | Mitigating delusional bias in deep Q-learning for robotic and/or other agents | Sep 24, 2020 | Issued |
Array
(
[id] => 18803413
[patent_doc_number] => 11836572
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-12-05
[patent_title] => Quantum inspired convolutional kernels for convolutional neural networks
[patent_app_type] => utility
[patent_app_number] => 17/031501
[patent_app_country] => US
[patent_app_date] => 2020-09-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 12
[patent_no_of_words] => 9599
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 86
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17031501
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/031501 | Quantum inspired convolutional kernels for convolutional neural networks | Sep 23, 2020 | Issued |
Array
(
[id] => 17476340
[patent_doc_number] => 20220083844
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-03-17
[patent_title] => SPATIAL TILING OF COMPUTE ARRAYS WITH SHARED CONTROL
[patent_app_type] => utility
[patent_app_number] => 17/022950
[patent_app_country] => US
[patent_app_date] => 2020-09-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17367
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 153
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17022950
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/022950 | Spatial tiling of compute arrays with shared control | Sep 15, 2020 | Issued |
Array
(
[id] => 18766165
[patent_doc_number] => 11816568
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-11-14
[patent_title] => Optimizing execution of a neural network based on operational performance parameters
[patent_app_type] => utility
[patent_app_number] => 17/016908
[patent_app_country] => US
[patent_app_date] => 2020-09-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 19
[patent_no_of_words] => 12520
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 111
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17016908
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/016908 | Optimizing execution of a neural network based on operational performance parameters | Sep 9, 2020 | Issued |