
Alexander G. Ghyka
Examiner (ID: 12479, Phone: (571)272-1669 , Office: P/2812 )
| Most Active Art Unit | 2812 |
| Art Unit(s) | 1105, 2899, 1106, 2812, 1754 |
| Total Applications | 2988 |
| Issued Applications | 2428 |
| Pending Applications | 244 |
| Abandoned Applications | 364 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 18204483
[patent_doc_number] => 11586880
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-02-21
[patent_title] => System and method for multi-horizon time series forecasting with dynamic temporal context learning
[patent_app_type] => utility
[patent_app_number] => 16/541120
[patent_app_country] => US
[patent_app_date] => 2019-08-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 12
[patent_no_of_words] => 13354
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 258
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16541120
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/541120 | System and method for multi-horizon time series forecasting with dynamic temporal context learning | Aug 13, 2019 | Issued |
Array
(
[id] => 15215911
[patent_doc_number] => 20190370642
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-12-05
[patent_title] => PROCESSING METHOD AND DEVICE, OPERATION METHOD AND DEVICE
[patent_app_type] => utility
[patent_app_number] => 16/528624
[patent_app_country] => US
[patent_app_date] => 2019-08-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22525
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 55
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16528624
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/528624 | Processing method and device, operation method and device | Jul 31, 2019 | Issued |
Array
(
[id] => 15152671
[patent_doc_number] => 20190354813
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-11-21
[patent_title] => DATA-EFFICIENT REINFORCEMENT LEARNING FOR CONTINUOUS CONTROL TASKS
[patent_app_type] => utility
[patent_app_number] => 16/528260
[patent_app_country] => US
[patent_app_date] => 2019-07-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8457
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 385
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16528260
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/528260 | Data-efficient reinforcement learning for continuous control tasks | Jul 30, 2019 | Issued |
Array
(
[id] => 16225393
[patent_doc_number] => 20200250510
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-08-06
[patent_title] => SYSTEMS AND METHODS FOR ARTIFICIAL INTELLIGENCE WITH A FLEXIBLE HARDWARE PROCESSING FRAMEWORK
[patent_app_type] => utility
[patent_app_number] => 16/528548
[patent_app_country] => US
[patent_app_date] => 2019-07-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16514
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 90
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16528548
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/528548 | Systems and methods for artificial intelligence with a flexible hardware processing framework | Jul 30, 2019 | Issued |
Array
(
[id] => 16117141
[patent_doc_number] => 20200210593
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-07-02
[patent_title] => PERSONAL DATA HUB SYSTEM
[patent_app_type] => utility
[patent_app_number] => 16/525239
[patent_app_country] => US
[patent_app_date] => 2019-07-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 23557
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 542
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16525239
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/525239 | PERSONAL DATA HUB SYSTEM | Jul 28, 2019 | Abandoned |
Array
(
[id] => 18276397
[patent_doc_number] => 11615341
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-03-28
[patent_title] => Customizable machine learning models
[patent_app_type] => utility
[patent_app_number] => 16/519053
[patent_app_country] => US
[patent_app_date] => 2019-07-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 6
[patent_no_of_words] => 10990
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 230
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16519053
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/519053 | Customizable machine learning models | Jul 22, 2019 | Issued |
Array
(
[id] => 14936273
[patent_doc_number] => 20190303775
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-10-03
[patent_title] => Inference-Based Assignment of Data Type to Data
[patent_app_type] => utility
[patent_app_number] => 16/443581
[patent_app_country] => US
[patent_app_date] => 2019-06-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7847
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 205
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16443581
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/443581 | Inference-based assignment of data type to data | Jun 16, 2019 | Issued |
Array
(
[id] => 17771619
[patent_doc_number] => 11403564
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-08-02
[patent_title] => Lithographic hotspot detection using multiple machine learning kernels
[patent_app_type] => utility
[patent_app_number] => 16/432514
[patent_app_country] => US
[patent_app_date] => 2019-06-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 16
[patent_no_of_words] => 9042
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 188
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16432514
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/432514 | Lithographic hotspot detection using multiple machine learning kernels | Jun 4, 2019 | Issued |
Array
(
[id] => 18506717
[patent_doc_number] => 11704536
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2023-07-18
[patent_title] => Convolution circuitry
[patent_app_type] => utility
[patent_app_number] => 16/427214
[patent_app_country] => US
[patent_app_date] => 2019-05-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 5007
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 152
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16427214
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/427214 | Convolution circuitry | May 29, 2019 | Issued |
Array
(
[id] => 15152763
[patent_doc_number] => 20190354859
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-11-21
[patent_title] => META-GRADIENT UPDATES FOR TRAINING RETURN FUNCTIONS FOR REINFORCEMENT LEARNING SYSTEMS
[patent_app_type] => utility
[patent_app_number] => 16/417536
[patent_app_country] => US
[patent_app_date] => 2019-05-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12142
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 187
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16417536
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/417536 | Meta-gradient updates for training return functions for reinforcement learning systems | May 19, 2019 | Issued |
Array
(
[id] => 15121847
[patent_doc_number] => 20190347557
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-11-14
[patent_title] => Generalizable and Interpretable Deep Learning Framework for Predicting MSI from Histopathology Slide Images
[patent_app_type] => utility
[patent_app_number] => 16/412362
[patent_app_country] => US
[patent_app_date] => 2019-05-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10353
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 110
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16412362
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/412362 | Generalizable and interpretable deep learning framework for predicting MSI from histopathology slide images | May 13, 2019 | Issued |
Array
(
[id] => 15028525
[patent_doc_number] => 20190325267
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-10-24
[patent_title] => MACHINE LEARNING PREDICTIVE LABELING SYSTEM
[patent_app_type] => utility
[patent_app_number] => 16/400157
[patent_app_country] => US
[patent_app_date] => 2019-05-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11558
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -27
[patent_words_short_claim] => 483
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16400157
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/400157 | Machine learning predictive labeling system | Apr 30, 2019 | Issued |
Array
(
[id] => 16279382
[patent_doc_number] => 10762414
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2020-09-01
[patent_title] => Systems and methods for sharing an artificial intelligence personality
[patent_app_type] => utility
[patent_app_number] => 16/389856
[patent_app_country] => US
[patent_app_date] => 2019-04-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 10
[patent_no_of_words] => 9307
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 322
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16389856
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/389856 | Systems and methods for sharing an artificial intelligence personality | Apr 18, 2019 | Issued |
Array
(
[id] => 15426613
[patent_doc_number] => 10546238
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-01-28
[patent_title] => Pre-training of neural network by parameter decomposition
[patent_app_type] => utility
[patent_app_number] => 16/378696
[patent_app_country] => US
[patent_app_date] => 2019-04-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 8487
[patent_no_of_claims] => 1
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 502
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16378696
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/378696 | Pre-training of neural network by parameter decomposition | Apr 8, 2019 | Issued |
Array
(
[id] => 15183311
[patent_doc_number] => 20190362247
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-11-28
[patent_title] => IMAGE TAGGING BASED UPON CROSS DOMAIN CONTEXT
[patent_app_type] => utility
[patent_app_number] => 16/374551
[patent_app_country] => US
[patent_app_date] => 2019-04-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7953
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16374551
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/374551 | Image tagging based upon cross domain context | Apr 2, 2019 | Issued |
Array
(
[id] => 17977774
[patent_doc_number] => 11494637
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-11-08
[patent_title] => Layer-wise distillation for protecting pre-trained neural network models
[patent_app_type] => utility
[patent_app_number] => 16/367448
[patent_app_country] => US
[patent_app_date] => 2019-03-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 9
[patent_no_of_words] => 13004
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 228
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16367448
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/367448 | Layer-wise distillation for protecting pre-trained neural network models | Mar 27, 2019 | Issued |
Array
(
[id] => 18031134
[patent_doc_number] => 11514325
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-11-29
[patent_title] => Method and system for phase recovery and holographic image reconstruction using a neural network
[patent_app_type] => utility
[patent_app_number] => 16/359609
[patent_app_country] => US
[patent_app_date] => 2019-03-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 15
[patent_figures_cnt] => 47
[patent_no_of_words] => 13435
[patent_no_of_claims] => 28
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 120
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16359609
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/359609 | Method and system for phase recovery and holographic image reconstruction using a neural network | Mar 19, 2019 | Issued |
Array
(
[id] => 18547109
[patent_doc_number] => 11720461
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-08-08
[patent_title] => Automated detection of code regressions from time-series data
[patent_app_type] => utility
[patent_app_number] => 16/351384
[patent_app_country] => US
[patent_app_date] => 2019-03-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 10
[patent_no_of_words] => 8990
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 281
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16351384
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/351384 | Automated detection of code regressions from time-series data | Mar 11, 2019 | Issued |
Array
(
[id] => 14902469
[patent_doc_number] => 20190295000
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-09-26
[patent_title] => EVOLVED MACHINE LEARNING MODELS
[patent_app_type] => utility
[patent_app_number] => 16/287189
[patent_app_country] => US
[patent_app_date] => 2019-02-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12202
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 196
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16287189
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/287189 | Evolved machine learning models | Feb 26, 2019 | Issued |
Array
(
[id] => 20440721
[patent_doc_number] => 12511559
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-12-30
[patent_title] => Using bayesian inference to predict review decisions in a match graph
[patent_app_type] => utility
[patent_app_number] => 17/419228
[patent_app_country] => US
[patent_app_date] => 2019-02-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 9
[patent_no_of_words] => 8395
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 271
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17419228
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/419228 | Using bayesian inference to predict review decisions in a match graph | Feb 18, 2019 | Issued |