
Andre Pierre Louis
Examiner (ID: 3033, Phone: (571)272-8636 , Office: P/2123 )
| Most Active Art Unit | 2123 |
| Art Unit(s) | 2127, 2146, 2187, 2123 |
| Total Applications | 889 |
| Issued Applications | 611 |
| Pending Applications | 62 |
| Abandoned Applications | 230 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 19260102
[patent_doc_number] => 12020162
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-06-25
[patent_title] => Weight-based local modulation of weight update in neural networks
[patent_app_type] => utility
[patent_app_number] => 17/106356
[patent_app_country] => US
[patent_app_date] => 2020-11-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 10058
[patent_no_of_claims] => 24
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 276
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17106356
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/106356 | Weight-based local modulation of weight update in neural networks | Nov 29, 2020 | Issued |
Array
(
[id] => 17173025
[patent_doc_number] => 20210326696
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-10-21
[patent_title] => METHOD AND APPARATUS FOR FORECASTING POWER DEMAND
[patent_app_type] => utility
[patent_app_number] => 16/953653
[patent_app_country] => US
[patent_app_date] => 2020-11-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6953
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 99
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16953653
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/953653 | METHOD AND APPARATUS FOR FORECASTING POWER DEMAND | Nov 19, 2020 | Abandoned |
Array
(
[id] => 16690805
[patent_doc_number] => 20210073283
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-03-11
[patent_title] => MACHINE LEARNING AND PREDICTION USING GRAPH COMMUNITIES
[patent_app_type] => utility
[patent_app_number] => 16/953235
[patent_app_country] => US
[patent_app_date] => 2020-11-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10328
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16953235
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/953235 | Machine learning and prediction using graph communities | Nov 18, 2020 | Issued |
Array
(
[id] => 17614283
[patent_doc_number] => 20220156563
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-05-19
[patent_title] => Detecting adversary attacks on a deep neural network (DNN)
[patent_app_type] => utility
[patent_app_number] => 16/950684
[patent_app_country] => US
[patent_app_date] => 2020-11-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6251
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 73
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16950684
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/950684 | Detecting adversary attacks on a deep neural network (DNN) | Nov 16, 2020 | Issued |
Array
(
[id] => 19062274
[patent_doc_number] => 11941511
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2024-03-26
[patent_title] => Storing of intermediate computed values for subsequent use in a machine trained network
[patent_app_type] => utility
[patent_app_number] => 17/093296
[patent_app_country] => US
[patent_app_date] => 2020-11-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 17
[patent_no_of_words] => 16848
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 308
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17093296
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/093296 | Storing of intermediate computed values for subsequent use in a machine trained network | Nov 8, 2020 | Issued |
Array
(
[id] => 19078697
[patent_doc_number] => 11948067
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2024-04-02
[patent_title] => Storing of intermediate computed values for subsequent use in a machine trained network
[patent_app_type] => utility
[patent_app_number] => 17/093278
[patent_app_country] => US
[patent_app_date] => 2020-11-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 17
[patent_no_of_words] => 16848
[patent_no_of_claims] => 26
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 347
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17093278
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/093278 | Storing of intermediate computed values for subsequent use in a machine trained network | Nov 8, 2020 | Issued |
Array
(
[id] => 19429273
[patent_doc_number] => 12088719
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-09-10
[patent_title] => Method and system for incremental training of machine learning models on edge devices
[patent_app_type] => utility
[patent_app_number] => 17/092289
[patent_app_country] => US
[patent_app_date] => 2020-11-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 9430
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 393
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17092289
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/092289 | Method and system for incremental training of machine learning models on edge devices | Nov 7, 2020 | Issued |
Array
(
[id] => 16826886
[patent_doc_number] => 20210142179
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-13
[patent_title] => DYNAMICALLY DIVIDING ACTIVATIONS AND KERNELS FOR IMPROVING MEMORY EFFICIENCY
[patent_app_type] => utility
[patent_app_number] => 17/090071
[patent_app_country] => US
[patent_app_date] => 2020-11-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 41000
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 143
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17090071
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/090071 | DYNAMICALLY DIVIDING ACTIVATIONS AND KERNELS FOR IMPROVING MEMORY EFFICIENCY | Nov 4, 2020 | Pending |
Array
(
[id] => 17581682
[patent_doc_number] => 20220138537
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-05-05
[patent_title] => PROBABILISTIC NONLINEAR RELATIONSHIPS CROSS-MULTI TIME SERIES AND EXTERNAL FACTORS FOR IMPROVED MULTIVARIATE TIME SERIES MODELING AND FORECASTING
[patent_app_type] => utility
[patent_app_number] => 17/087568
[patent_app_country] => US
[patent_app_date] => 2020-11-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6688
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 100
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17087568
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/087568 | PROBABILISTIC NONLINEAR RELATIONSHIPS CROSS-MULTI TIME SERIES AND EXTERNAL FACTORS FOR IMPROVED MULTIVARIATE TIME SERIES MODELING AND FORECASTING | Nov 1, 2020 | Pending |
Array
(
[id] => 20266209
[patent_doc_number] => 12437202
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-10-07
[patent_title] => Human characteristic normalization with an autoencoder
[patent_app_type] => utility
[patent_app_number] => 17/085428
[patent_app_country] => US
[patent_app_date] => 2020-10-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 6
[patent_no_of_words] => 4830
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 230
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17085428
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/085428 | Human characteristic normalization with an autoencoder | Oct 29, 2020 | Issued |
Array
(
[id] => 17581681
[patent_doc_number] => 20220138536
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-05-05
[patent_title] => ACTIONAL-STRUCTURAL SELF-ATTENTION GRAPH CONVOLUTIONAL NETWORK FOR ACTION RECOGNITION
[patent_app_type] => utility
[patent_app_number] => 17/083738
[patent_app_country] => US
[patent_app_date] => 2020-10-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7176
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 108
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17083738
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/083738 | ACTIONAL-STRUCTURAL SELF-ATTENTION GRAPH CONVOLUTIONAL NETWORK FOR ACTION RECOGNITION | Oct 28, 2020 | Abandoned |
Array
(
[id] => 17565632
[patent_doc_number] => 20220129781
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-04-28
[patent_title] => METHOD, APPARATUS AND COMPUTER PROGRAM PRODUCT FOR IMPROVING INTERPRETABILITY OF SOFTWARE BLACK-BOX MACHINE LEARNING MODEL OUTPUTS
[patent_app_type] => utility
[patent_app_number] => 16/949359
[patent_app_country] => US
[patent_app_date] => 2020-10-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 20614
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 148
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16949359
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/949359 | METHOD, APPARATUS AND COMPUTER PROGRAM PRODUCT FOR IMPROVING INTERPRETABILITY OF SOFTWARE BLACK-BOX MACHINE LEARNING MODEL OUTPUTS | Oct 26, 2020 | Pending |
Array
(
[id] => 17535792
[patent_doc_number] => 20220114401
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-04-14
[patent_title] => PREDICTING PERFORMANCE OF MACHINE LEARNING MODELS
[patent_app_type] => utility
[patent_app_number] => 17/068226
[patent_app_country] => US
[patent_app_date] => 2020-10-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7667
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 89
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17068226
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/068226 | Predicting performance of machine learning models | Oct 11, 2020 | Issued |
Array
(
[id] => 17535815
[patent_doc_number] => 20220114424
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-04-14
[patent_title] => MULTI-BANDWIDTH SEPARATED FEATURE EXTRACTION CONVOLUTION LAYER FOR CONVOLUTIONAL NEURAL NETWORKS
[patent_app_type] => utility
[patent_app_number] => 17/066220
[patent_app_country] => US
[patent_app_date] => 2020-10-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16526
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 231
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17066220
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/066220 | MULTI-BANDWIDTH SEPARATED FEATURE EXTRACTION CONVOLUTION LAYER FOR CONVOLUTIONAL NEURAL NETWORKS | Oct 7, 2020 | Abandoned |
Array
(
[id] => 16751838
[patent_doc_number] => 20210103849
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-04-08
[patent_title] => PREPARING AND CONVERTING GOTTESMAN-KITAEV-PRESKILL STATES
[patent_app_type] => utility
[patent_app_number] => 17/063660
[patent_app_country] => US
[patent_app_date] => 2020-10-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9607
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -26
[patent_words_short_claim] => 86
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17063660
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/063660 | PREPARING AND CONVERTING GOTTESMAN-KITAEV-PRESKILL STATES | Oct 4, 2020 | Abandoned |
Array
(
[id] => 19340789
[patent_doc_number] => 12050982
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2024-07-30
[patent_title] => Delay spiking neural networks
[patent_app_type] => utility
[patent_app_number] => 17/035345
[patent_app_country] => US
[patent_app_date] => 2020-09-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 5123
[patent_no_of_claims] => 4
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 152
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17035345
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/035345 | Delay spiking neural networks | Sep 27, 2020 | Issued |
Array
(
[id] => 18155283
[patent_doc_number] => 11568264
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-01-31
[patent_title] => Using shape information and loss functions for predictive modelling
[patent_app_type] => utility
[patent_app_number] => 17/608978
[patent_app_country] => US
[patent_app_date] => 2020-09-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 16
[patent_figures_cnt] => 16
[patent_no_of_words] => 9985
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 292
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17608978
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/608978 | Using shape information and loss functions for predictive modelling | Sep 24, 2020 | Issued |
Array
(
[id] => 18039768
[patent_doc_number] => 20220383985
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-12-01
[patent_title] => MODELLING METHOD USING A CONDITIONAL VARIATIONAL AUTOENCODER
[patent_app_type] => utility
[patent_app_number] => 17/763501
[patent_app_country] => US
[patent_app_date] => 2020-09-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7455
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => 0
[patent_words_short_claim] => 18
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17763501
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/763501 | MODELLING METHOD USING A CONDITIONAL VARIATIONAL AUTOENCODER | Sep 24, 2020 | Pending |
Array
(
[id] => 19911952
[patent_doc_number] => 12288163
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-04-29
[patent_title] => Training method for quantizing the weights and inputs of a neural network
[patent_app_type] => utility
[patent_app_number] => 17/031817
[patent_app_country] => US
[patent_app_date] => 2020-09-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 16
[patent_no_of_words] => 4146
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 296
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17031817
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/031817 | Training method for quantizing the weights and inputs of a neural network | Sep 23, 2020 | Issued |
Array
(
[id] => 16730225
[patent_doc_number] => 20210097372
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-04-01
[patent_title] => Co-Informatic Generative Adversarial Networks for Efficient Data Co-Clustering
[patent_app_type] => utility
[patent_app_number] => 17/031575
[patent_app_country] => US
[patent_app_date] => 2020-09-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11528
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 154
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17031575
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/031575 | Co-informatic generative adversarial networks for efficient data co-clustering | Sep 23, 2020 | Issued |