
Anoop Kumar Singh
Examiner (ID: 8256, Phone: (571)272-3306 , Office: P/1632 )
| Most Active Art Unit | 1632 |
| Art Unit(s) | 1632 |
| Total Applications | 967 |
| Issued Applications | 309 |
| Pending Applications | 158 |
| Abandoned Applications | 545 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 19716142
[patent_doc_number] => 12201657
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-01-21
[patent_title] => Adeno-associated virus compositions for restoring HBB gene function and methods of use thereof
[patent_app_type] => utility
[patent_app_number] => 16/163061
[patent_app_country] => US
[patent_app_date] => 2018-10-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 15
[patent_figures_cnt] => 21
[patent_no_of_words] => 29206
[patent_no_of_claims] => 3
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 117
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16163061
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/163061 | Adeno-associated virus compositions for restoring HBB gene function and methods of use thereof | Oct 16, 2018 | Issued |
Array
(
[id] => 19395697
[patent_doc_number] => 12070021
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-08-27
[patent_title] => Chimeric mouse comprising stably transplanted bat cells
[patent_app_type] => utility
[patent_app_number] => 16/650814
[patent_app_country] => US
[patent_app_date] => 2018-09-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 9
[patent_no_of_words] => 8034
[patent_no_of_claims] => 3
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 83
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16650814
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/650814 | Chimeric mouse comprising stably transplanted bat cells | Sep 24, 2018 | Issued |
Array
(
[id] => 15678401
[patent_doc_number] => 20200093864
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-03-26
[patent_title] => NOVEL THERAPEUTIC STEM CELL COMPOSITIONS WITH AN ACTIVE OXIDATIVE PHOSPHORYLATION SITE AND THEIR PREPARATION
[patent_app_type] => utility
[patent_app_number] => 16/138898
[patent_app_country] => US
[patent_app_date] => 2018-09-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9641
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 23
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16138898
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/138898 | NOVEL THERAPEUTIC STEM CELL COMPOSITIONS WITH AN ACTIVE OXIDATIVE PHOSPHORYLATION SITE AND THEIR PREPARATION | Sep 20, 2018 | Abandoned |
Array
(
[id] => 16674616
[patent_doc_number] => 20210063379
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-03-04
[patent_title] => Customized Growth Factor Screening System for Cell Culture
[patent_app_type] => utility
[patent_app_number] => 16/644267
[patent_app_country] => US
[patent_app_date] => 2018-09-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3187
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 42
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16644267
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/644267 | Customized Growth Factor Screening System for Cell Culture | Sep 6, 2018 | Abandoned |
Array
(
[id] => 16696923
[patent_doc_number] => 10947506
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-03-16
[patent_title] => Human cardiovascular progenitor cells
[patent_app_type] => utility
[patent_app_number] => 16/059647
[patent_app_country] => US
[patent_app_date] => 2018-08-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 32
[patent_figures_cnt] => 62
[patent_no_of_words] => 7712
[patent_no_of_claims] => 3
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 87
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16059647
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/059647 | Human cardiovascular progenitor cells | Aug 8, 2018 | Issued |
Array
(
[id] => 15493335
[patent_doc_number] => 20200046856
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-02-13
[patent_title] => METHODS FOR IDENTIFYING MBLAC1-DEPENDENT MOLECULAR NETWORKS
[patent_app_type] => utility
[patent_app_number] => 16/057013
[patent_app_country] => US
[patent_app_date] => 2018-08-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 20822
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -22
[patent_words_short_claim] => 13
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16057013
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/057013 | METHODS FOR IDENTIFYING MBLAC1-DEPENDENT MOLECULAR NETWORKS | Aug 6, 2018 | Abandoned |
Array
(
[id] => 15990601
[patent_doc_number] => 20200171171
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-06-04
[patent_title] => GENE THERAPY FOR TREATMENT OF INFERTILITY
[patent_app_type] => utility
[patent_app_number] => 16/630589
[patent_app_country] => US
[patent_app_date] => 2018-07-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22783
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -20
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16630589
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/630589 | GENE THERAPY FOR TREATMENT OF INFERTILITY | Jul 25, 2018 | Abandoned |
Array
(
[id] => 16839802
[patent_doc_number] => 20210147814
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-20
[patent_title] => METHODS FOR GENERATING PLURIPOTENT STEM CELLS
[patent_app_type] => utility
[patent_app_number] => 16/630420
[patent_app_country] => US
[patent_app_date] => 2018-07-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 23650
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -58
[patent_words_short_claim] => 19
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16630420
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/630420 | METHODS FOR GENERATING PLURIPOTENT STEM CELLS | Jul 11, 2018 | Pending |
Array
(
[id] => 16839802
[patent_doc_number] => 20210147814
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-20
[patent_title] => METHODS FOR GENERATING PLURIPOTENT STEM CELLS
[patent_app_type] => utility
[patent_app_number] => 16/630420
[patent_app_country] => US
[patent_app_date] => 2018-07-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 23650
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -58
[patent_words_short_claim] => 19
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16630420
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/630420 | METHODS FOR GENERATING PLURIPOTENT STEM CELLS | Jul 11, 2018 | Pending |
Array
(
[id] => 16839798
[patent_doc_number] => 20210147810
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-20
[patent_title] => SINGLE LUNG CELL-DERIVED ORGANOIDS
[patent_app_type] => utility
[patent_app_number] => 16/626059
[patent_app_country] => US
[patent_app_date] => 2018-06-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6593
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -22
[patent_words_short_claim] => 11
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16626059
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/626059 | SINGLE LUNG CELL-DERIVED ORGANOIDS | Jun 27, 2018 | Abandoned |
Array
(
[id] => 13508237
[patent_doc_number] => 20180305661
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-10-25
[patent_title] => ISOLATION, EXPANSION AND USE OF CLONOGENIC ENDOTHELIAL PROGENITOR CELLS
[patent_app_type] => utility
[patent_app_number] => 16/020286
[patent_app_country] => US
[patent_app_date] => 2018-06-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13309
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 34
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16020286
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/020286 | ISOLATION, EXPANSION AND USE OF CLONOGENIC ENDOTHELIAL PROGENITOR CELLS | Jun 26, 2018 | Abandoned |
Array
(
[id] => 15861169
[patent_doc_number] => 20200137988
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-05-07
[patent_title] => FISH EGG PROCESSING APPARATUS
[patent_app_type] => utility
[patent_app_number] => 16/629396
[patent_app_country] => US
[patent_app_date] => 2018-06-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4738
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -5
[patent_words_short_claim] => 94
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16629396
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/629396 | FISH EGG PROCESSING APPARATUS | Jun 24, 2018 | Abandoned |
Array
(
[id] => 14277811
[patent_doc_number] => 20190136190
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-05-09
[patent_title] => DIFFERENTIATION OF PLURIPOTENT STEM CELLS AND CARDIAC PROGENITOR CELLS INTO STRIATED CARDIOMYOCYTE FIBERS USING LAMININS LN-511, LN-521 AND LN-221
[patent_app_type] => utility
[patent_app_number] => 16/015336
[patent_app_country] => US
[patent_app_date] => 2018-06-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18235
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 42
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16015336
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/015336 | DIFFERENTIATION OF PLURIPOTENT STEM CELLS AND CARDIAC PROGENITOR CELLS INTO STRIATED CARDIOMYOCYTE FIBERS USING LAMININS LN-511, LN-521 AND LN-221 | Jun 21, 2018 | Pending |
Array
(
[id] => 13622757
[patent_doc_number] => 20180362930
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-20
[patent_title] => DIFFERENTIATION OF PLURIPOTENT STEM CELLS AND CARDIAC PROGENITOR CELLS INTO STRIATED CARDIOMYOCYTE FIBERS USING LAMININS LN-511, LN-521 AND LN-221
[patent_app_type] => utility
[patent_app_number] => 16/015309
[patent_app_country] => US
[patent_app_date] => 2018-06-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18241
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 27
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16015309
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/015309 | DIFFERENTIATION OF PLURIPOTENT STEM CELLS AND CARDIAC PROGENITOR CELLS INTO STRIATED CARDIOMYOCYTE FIBERS USING LAMININS LN-511, LN-521 AND LN-221 | Jun 21, 2018 | Pending |
Array
(
[id] => 13622757
[patent_doc_number] => 20180362930
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-20
[patent_title] => DIFFERENTIATION OF PLURIPOTENT STEM CELLS AND CARDIAC PROGENITOR CELLS INTO STRIATED CARDIOMYOCYTE FIBERS USING LAMININS LN-511, LN-521 AND LN-221
[patent_app_type] => utility
[patent_app_number] => 16/015309
[patent_app_country] => US
[patent_app_date] => 2018-06-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18241
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 27
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16015309
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/015309 | DIFFERENTIATION OF PLURIPOTENT STEM CELLS AND CARDIAC PROGENITOR CELLS INTO STRIATED CARDIOMYOCYTE FIBERS USING LAMININS LN-511, LN-521 AND LN-221 | Jun 21, 2018 | Pending |
Array
(
[id] => 15239741
[patent_doc_number] => 20190374656
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-12-12
[patent_title] => METHODS FOR MAINTAINING OPTIMUM DNA METHYLATION BY ENDOGENOUS METHYLATION AND DEMETHYLATION OF DNA
[patent_app_type] => utility
[patent_app_number] => 16/005338
[patent_app_country] => US
[patent_app_date] => 2018-06-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5691
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -53
[patent_words_short_claim] => 48
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16005338
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/005338 | METHODS FOR MAINTAINING OPTIMUM DNA METHYLATION BY ENDOGENOUS METHYLATION AND DEMETHYLATION OF DNA | Jun 10, 2018 | Abandoned |
Array
(
[id] => 13457537
[patent_doc_number] => 20180280311
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-10-04
[patent_title] => METHODS FOR TARGETED IN VITRO AND IN VIVO DRUG DELIVERY TO MAMMALIAN CELLS VIA BACTERIALLY DERIVED INTACT MINICELLS
[patent_app_type] => utility
[patent_app_number] => 16/000480
[patent_app_country] => US
[patent_app_date] => 2018-06-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16938
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16000480
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/000480 | METHODS FOR TARGETED IN VITRO AND IN VIVO DRUG DELIVERY TO MAMMALIAN CELLS VIA BACTERIALLY DERIVED INTACT MINICELLS | Jun 4, 2018 | Abandoned |
Array
(
[id] => 13729897
[patent_doc_number] => 20180369416
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-27
[patent_title] => TARGETED GENE DELIVERY TO NON-PHAGOCYTIC MAMMALIAN CELLS VIA BACTERIALLY DERIVED INTACT MINICELLS
[patent_app_type] => utility
[patent_app_number] => 15/997238
[patent_app_country] => US
[patent_app_date] => 2018-06-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13915
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15997238
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/997238 | Targeted gene delivery to non-phagocytic mammalian cells via bacterially derived intact minicells | Jun 3, 2018 | Issued |
Array
(
[id] => 13396293
[patent_doc_number] => 20180249689
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-09-06
[patent_title] => NON-HUMAN ANIMALS HAVING A HUMANIZED CLUSTER OF DIFFERENTIATION 47 GENE
[patent_app_type] => utility
[patent_app_number] => 15/982174
[patent_app_country] => US
[patent_app_date] => 2018-05-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24176
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15982174
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/982174 | Method of using mouse having a humanized cluster of differentiation 47 gene | May 16, 2018 | Issued |
Array
(
[id] => 18683290
[patent_doc_number] => 11778994
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-10-10
[patent_title] => NSG mice lacking MHC class I and class II
[patent_app_type] => utility
[patent_app_number] => 16/612450
[patent_app_country] => US
[patent_app_date] => 2018-05-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 24
[patent_figures_cnt] => 46
[patent_no_of_words] => 20770
[patent_no_of_claims] => 12
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 110
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16612450
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/612450 | NSG mice lacking MHC class I and class II | May 13, 2018 | Issued |