
Anoop Kumar Singh
Examiner (ID: 8256, Phone: (571)272-3306 , Office: P/1632 )
| Most Active Art Unit | 1632 |
| Art Unit(s) | 1632 |
| Total Applications | 967 |
| Issued Applications | 309 |
| Pending Applications | 158 |
| Abandoned Applications | 545 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 13410227
[patent_doc_number] => 20180256656
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-09-13
[patent_title] => USE OF A COMBINATION OF MYXOMA VIRUS AND RAPAMYCIN FOR THERAPEUTIC TREATMENT
[patent_app_type] => utility
[patent_app_number] => 15/972994
[patent_app_country] => US
[patent_app_date] => 2018-05-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15763
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15972994
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/972994 | USE OF A COMBINATION OF MYXOMA VIRUS AND RAPAMYCIN FOR THERAPEUTIC TREATMENT | May 6, 2018 | Abandoned |
Array
(
[id] => 13537235
[patent_doc_number] => 20180320164
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-11-08
[patent_title] => DNA SEQUENCE MODIFICATION-BASED GENE DRIVE
[patent_app_type] => utility
[patent_app_number] => 15/970728
[patent_app_country] => US
[patent_app_date] => 2018-05-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 27718
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15970728
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/970728 | DNA sequence modification-based gene drive | May 2, 2018 | Issued |
Array
(
[id] => 16750158
[patent_doc_number] => 20210102167
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-04-08
[patent_title] => HEMATOPOIETIC PROGENITOR CELL MARKER
[patent_app_type] => utility
[patent_app_number] => 16/607967
[patent_app_country] => US
[patent_app_date] => 2018-04-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10298
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16607967
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/607967 | HEMATOPOIETIC PROGENITOR CELL MARKER | Apr 24, 2018 | Pending |
Array
(
[id] => 16750158
[patent_doc_number] => 20210102167
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-04-08
[patent_title] => HEMATOPOIETIC PROGENITOR CELL MARKER
[patent_app_type] => utility
[patent_app_number] => 16/607967
[patent_app_country] => US
[patent_app_date] => 2018-04-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10298
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16607967
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/607967 | HEMATOPOIETIC PROGENITOR CELL MARKER | Apr 24, 2018 | Pending |
Array
(
[id] => 13488557
[patent_doc_number] => 20180295821
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-10-18
[patent_title] => Transgenic Animals
[patent_app_type] => utility
[patent_app_number] => 15/955216
[patent_app_country] => US
[patent_app_date] => 2018-04-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17111
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -23
[patent_words_short_claim] => 183
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15955216
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/955216 | Transgenic Animals | Apr 16, 2018 | Abandoned |
Array
(
[id] => 13343543
[patent_doc_number] => 20180223311
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-08-09
[patent_title] => METHODS AND COMPOSITIONS FOR TREATMENT OF A GENETIC CONDITION
[patent_app_type] => utility
[patent_app_number] => 15/943082
[patent_app_country] => US
[patent_app_date] => 2018-04-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 27236
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 75
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15943082
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/943082 | Methods and compositions for treatment of a genetic condition | Apr 1, 2018 | Issued |
Array
(
[id] => 13342831
[patent_doc_number] => 20180222955
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-08-09
[patent_title] => GENE THERAPY FOR DIABETIC NEUROPATHY USING AN HGF ISOFORM
[patent_app_type] => utility
[patent_app_number] => 15/942440
[patent_app_country] => US
[patent_app_date] => 2018-03-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10354
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => 0
[patent_words_short_claim] => 35
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15942440
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/942440 | GENE THERAPY FOR DIABETIC NEUROPATHY USING AN HGF ISOFORM | Mar 30, 2018 | Abandoned |
Array
(
[id] => 15681759
[patent_doc_number] => 20200095543
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-03-26
[patent_title] => Cells and Methods of Uses and Making the Same
[patent_app_type] => utility
[patent_app_number] => 16/495318
[patent_app_country] => US
[patent_app_date] => 2018-03-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17844
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16495318
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/495318 | Cells and Methods of Uses and Making the Same | Mar 29, 2018 | Abandoned |
Array
(
[id] => 16725795
[patent_doc_number] => 20210092942
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-04-01
[patent_title] => NOVEL IMMUNODEFICIENT RAT FOR MODELING HUMAN CANCER
[patent_app_type] => utility
[patent_app_number] => 16/499439
[patent_app_country] => US
[patent_app_date] => 2018-03-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8007
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -27
[patent_words_short_claim] => 40
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16499439
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/499439 | NOVEL IMMUNODEFICIENT RAT FOR MODELING HUMAN CANCER | Mar 29, 2018 | Abandoned |
Array
(
[id] => 13325905
[patent_doc_number] => 20180214490
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-08-02
[patent_title] => METHODS OF TREATING LYSOSOMAL STORAGE DISEASES
[patent_app_type] => utility
[patent_app_number] => 15/933907
[patent_app_country] => US
[patent_app_date] => 2018-03-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 25202
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -8
[patent_words_short_claim] => 112
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15933907
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/933907 | METHODS OF TREATING LYSOSOMAL STORAGE DISEASES | Mar 22, 2018 | Abandoned |
Array
(
[id] => 16259990
[patent_doc_number] => 10751399
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-08-25
[patent_title] => Chimeric antigen receptors that bind to SSEA4 and uses thereof
[patent_app_type] => utility
[patent_app_number] => 15/926382
[patent_app_country] => US
[patent_app_date] => 2018-03-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 2
[patent_figures_cnt] => 3
[patent_no_of_words] => 3186
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 21
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15926382
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/926382 | Chimeric antigen receptors that bind to SSEA4 and uses thereof | Mar 19, 2018 | Issued |
Array
(
[id] => 13457895
[patent_doc_number] => 20180280490
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-10-04
[patent_title] => METHODS AND COMPOSITIONS FOR PREVENTING A CONDITION
[patent_app_type] => utility
[patent_app_number] => 15/926716
[patent_app_country] => US
[patent_app_date] => 2018-03-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 31798
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15926716
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/926716 | METHODS AND COMPOSITIONS FOR PREVENTING A CONDITION | Mar 19, 2018 | Abandoned |
Array
(
[id] => 13607645
[patent_doc_number] => 20180355372
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-13
[patent_title] => IMPORTATION OF MITOCHONDRIAL PROTEIN BY AN ENHANCED ALLOTOPIC APPROACH
[patent_app_type] => utility
[patent_app_number] => 15/914566
[patent_app_country] => US
[patent_app_date] => 2018-03-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18587
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 128
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15914566
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/914566 | IMPORTATION OF MITOCHONDRIAL PROTEIN BY AN ENHANCED ALLOTOPIC APPROACH | Mar 6, 2018 | Abandoned |
Array
(
[id] => 19954432
[patent_doc_number] => 12324829
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-06-10
[patent_title] => Methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders
[patent_app_type] => utility
[patent_app_number] => 15/903861
[patent_app_country] => US
[patent_app_date] => 2018-02-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 10
[patent_no_of_words] => 6273
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 139
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15903861
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/903861 | Methods for delivery of polynucleotides by adeno-associated virus for lysosomal storage disorders | Feb 22, 2018 | Issued |
Array
(
[id] => 15324795
[patent_doc_number] => 20200002727
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-01-02
[patent_title] => MULTI-SITE SPECIFIC INTEGRATION CELLS FOR DIFFICULT TO EXPRESS PROTEINS
[patent_app_type] => utility
[patent_app_number] => 16/486363
[patent_app_country] => US
[patent_app_date] => 2018-02-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22057
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -59
[patent_words_short_claim] => 26
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16486363
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/486363 | MULTI-SITE SPECIFIC INTEGRATION CELLS FOR DIFFICULT TO EXPRESS PROTEINS | Feb 16, 2018 | Pending |
Array
(
[id] => 12806470
[patent_doc_number] => 20180160660
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-06-14
[patent_title] => MOUSE MODEL OF RETINAL DEGENERATION
[patent_app_type] => utility
[patent_app_number] => 15/894782
[patent_app_country] => US
[patent_app_date] => 2018-02-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9957
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => 0
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15894782
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/894782 | MOUSE MODEL OF RETINAL DEGENERATION | Feb 11, 2018 | Abandoned |
Array
(
[id] => 15347929
[patent_doc_number] => 20200011856
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-01-09
[patent_title] => Method for Determining the Effectiveness of Treatment for the Prevention of Heartworm Disease
[patent_app_type] => utility
[patent_app_number] => 16/484768
[patent_app_country] => US
[patent_app_date] => 2018-02-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19221
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16484768
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/484768 | Method for Determining the Effectiveness of Treatment for the Prevention of Heartworm Disease | Feb 7, 2018 | Abandoned |
Array
(
[id] => 15178697
[patent_doc_number] => 20190359940
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-11-28
[patent_title] => METHODS AND KITS FOR GENERATING MIMETIC INNATE IMMUNE CELLS FROM PLURIPOTENT STEM CELLS
[patent_app_type] => utility
[patent_app_number] => 16/484349
[patent_app_country] => US
[patent_app_date] => 2018-02-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14823
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -28
[patent_words_short_claim] => 28
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16484349
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/484349 | Methods for generating mimetic innate immune cells from pluripotent stem cells | Feb 6, 2018 | Issued |
Array
(
[id] => 15178697
[patent_doc_number] => 20190359940
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-11-28
[patent_title] => METHODS AND KITS FOR GENERATING MIMETIC INNATE IMMUNE CELLS FROM PLURIPOTENT STEM CELLS
[patent_app_type] => utility
[patent_app_number] => 16/484349
[patent_app_country] => US
[patent_app_date] => 2018-02-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14823
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -28
[patent_words_short_claim] => 28
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16484349
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/484349 | Methods for generating mimetic innate immune cells from pluripotent stem cells | Feb 6, 2018 | Issued |
Array
(
[id] => 15178697
[patent_doc_number] => 20190359940
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-11-28
[patent_title] => METHODS AND KITS FOR GENERATING MIMETIC INNATE IMMUNE CELLS FROM PLURIPOTENT STEM CELLS
[patent_app_type] => utility
[patent_app_number] => 16/484349
[patent_app_country] => US
[patent_app_date] => 2018-02-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14823
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -28
[patent_words_short_claim] => 28
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16484349
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/484349 | Methods for generating mimetic innate immune cells from pluripotent stem cells | Feb 6, 2018 | Issued |