
Christopher Y. Kim
Examiner (ID: 18274)
| Most Active Art Unit | 1801 |
| Art Unit(s) | 1744, 2876, 1801, 1312 |
| Total Applications | 419 |
| Issued Applications | 342 |
| Pending Applications | 16 |
| Abandoned Applications | 61 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 18764275
[patent_doc_number] => 11814662
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-11-14
[patent_title] => Programmed DNA-driven self-assembled RNA hydrogel
[patent_app_type] => utility
[patent_app_number] => 17/084432
[patent_app_country] => US
[patent_app_date] => 2020-10-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 45
[patent_figures_cnt] => 92
[patent_no_of_words] => 23120
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 48
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17084432
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/084432 | Programmed DNA-driven self-assembled RNA hydrogel | Oct 28, 2020 | Issued |
Array
(
[id] => 19910265
[patent_doc_number] => 12286461
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-04-29
[patent_title] => Recombinant fused polypeptide and use thereof
[patent_app_type] => utility
[patent_app_number] => 17/635952
[patent_app_country] => US
[patent_app_date] => 2020-10-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 7
[patent_no_of_words] => 3070
[patent_no_of_claims] => 9
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 46
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17635952
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/635952 | Recombinant fused polypeptide and use thereof | Oct 25, 2020 | Issued |
Array
(
[id] => 16657718
[patent_doc_number] => 20210054354
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-02-25
[patent_title] => RATIONALLY-DESIGNED SINGLE-CHAIN MEGANUCLEASES WITH NON-PALINDROMIC RECOGNITION SEQUENCES
[patent_app_type] => utility
[patent_app_number] => 17/079377
[patent_app_country] => US
[patent_app_date] => 2020-10-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19539
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17079377
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/079377 | RATIONALLY-DESIGNED SINGLE-CHAIN MEGANUCLEASES WITH NON-PALINDROMIC RECOGNITION SEQUENCES | Oct 22, 2020 | Abandoned |
Array
(
[id] => 20414336
[patent_doc_number] => 12497609
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-12-16
[patent_title] => Protospacer adjacent motif sequence and method for modifying target nucleic acid in genome of cell by using same
[patent_app_type] => utility
[patent_app_number] => 17/768359
[patent_app_country] => US
[patent_app_date] => 2020-10-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 17
[patent_no_of_words] => 536
[patent_no_of_claims] => 4
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 126
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17768359
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/768359 | Protospacer adjacent motif sequence and method for modifying target nucleic acid in genome of cell by using same | Oct 12, 2020 | Issued |
Array
(
[id] => 16762654
[patent_doc_number] => 20210108235
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-04-15
[patent_title] => FORMATION AND ISOLATION OF HYDROXYCARBOXYLIC ACIDS VIA A SOPHOROLIPID INTERMEDIATE
[patent_app_type] => utility
[patent_app_number] => 17/068147
[patent_app_country] => US
[patent_app_date] => 2020-10-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17611
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -26
[patent_words_short_claim] => 56
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17068147
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/068147 | Formation and isolation of hydroxycarboxylic acids via a sophorolipid intermediate | Oct 11, 2020 | Issued |
Array
(
[id] => 16762648
[patent_doc_number] => 20210108229
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-04-15
[patent_title] => SYSTEMS, METHODS, AND COMPOSITIONS FOR CORRECTION OF FRAMESHIFT MUTATIONS
[patent_app_type] => utility
[patent_app_number] => 17/067379
[patent_app_country] => US
[patent_app_date] => 2020-10-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13241
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -64
[patent_words_short_claim] => 15
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17067379
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/067379 | Systems, methods, and compositions for correction of frameshift mutations | Oct 8, 2020 | Issued |
Array
(
[id] => 17769584
[patent_doc_number] => 11401513
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-08-02
[patent_title] => Modified membrane type serine protease 1 (MTSP-1) polypeptides and methods of use
[patent_app_type] => utility
[patent_app_number] => 17/066398
[patent_app_country] => US
[patent_app_date] => 2020-10-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 2
[patent_figures_cnt] => 2
[patent_no_of_words] => 75423
[patent_no_of_claims] => 41
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 226
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17066398
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/066398 | Modified membrane type serine protease 1 (MTSP-1) polypeptides and methods of use | Oct 7, 2020 | Issued |
Array
(
[id] => 16808321
[patent_doc_number] => 20210130874
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-06
[patent_title] => RECOGNITION SEQUENCES FOR I-CREI-DERIVED MEGANUCLEASES AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/065340
[patent_app_country] => US
[patent_app_date] => 2020-10-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11131
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 87
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17065340
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/065340 | RECOGNITION SEQUENCES FOR I-CREI-DERIVED MEGANUCLEASES AND USES THEREOF | Oct 6, 2020 | Abandoned |
Array
(
[id] => 16793215
[patent_doc_number] => 20210123032
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-04-29
[patent_title] => MODIFIED HELICASES
[patent_app_type] => utility
[patent_app_number] => 17/064329
[patent_app_country] => US
[patent_app_date] => 2020-10-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 48846
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17064329
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/064329 | Modified helicases | Oct 5, 2020 | Issued |
Array
(
[id] => 18590474
[patent_doc_number] => 11739358
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-08-29
[patent_title] => Enzymatic method for preparation of UDP-galactose
[patent_app_type] => utility
[patent_app_number] => 17/755650
[patent_app_country] => US
[patent_app_date] => 2020-09-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 20
[patent_no_of_words] => 25065
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 74
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17755650
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/755650 | Enzymatic method for preparation of UDP-galactose | Sep 29, 2020 | Issued |
Array
(
[id] => 18643485
[patent_doc_number] => 11767546
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-09-26
[patent_title] => Enzymatic method for preparation of UDP-GlcNAc
[patent_app_type] => utility
[patent_app_number] => 17/755653
[patent_app_country] => US
[patent_app_date] => 2020-09-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 26
[patent_figures_cnt] => 43
[patent_no_of_words] => 31362
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 86
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17755653
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/755653 | Enzymatic method for preparation of UDP-GlcNAc | Sep 29, 2020 | Issued |
Array
(
[id] => 16824585
[patent_doc_number] => 20210139878
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-13
[patent_title] => PHOSPHOKETOLASES FOR IMPROVED PRODUCTION OF ACETYL COENZYME A-DERIVED METABOLITES, ISOPRENE, ISOPRENOID PRECURSORS, AND ISOPRENOID
[patent_app_type] => utility
[patent_app_number] => 16/948592
[patent_app_country] => US
[patent_app_date] => 2020-09-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 97822
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16948592
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/948592 | Phosphoketolases for improved production of acetyl coenzyme A-derived metabolites, isoprene, isoprenoid precursors, and isoprenoid | Sep 23, 2020 | Issued |
Array
(
[id] => 16750177
[patent_doc_number] => 20210102186
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-04-08
[patent_title] => 3-METHYLCROTONIC ACID DECARBOXYLASE (MDC) VARIANTS
[patent_app_type] => utility
[patent_app_number] => 17/029825
[patent_app_country] => US
[patent_app_date] => 2020-09-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 110322
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17029825
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/029825 | 3-methylcrotonic acid decarboxylase (MDC) variants | Sep 22, 2020 | Issued |
Array
(
[id] => 17982872
[patent_doc_number] => 20220348908
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-11-03
[patent_title] => COMPOSITIONS AND METHODS FOR MODULATING HEPATOCYTE NUCLEAR FACTOR 4-ALPHA (HNF4alpha) GENE EXPRESSION
[patent_app_type] => utility
[patent_app_number] => 17/029820
[patent_app_country] => US
[patent_app_date] => 2020-09-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 65930
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -34
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17029820
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/029820 | Compositions and methods for modulating hepatocyte nuclear factor 4-alpha (HNF4a) gene expression | Sep 22, 2020 | Issued |
Array
(
[id] => 18643464
[patent_doc_number] => 11767524
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-09-26
[patent_title] => His-MBP tagged DNA endonuclease for facilitated enzyme removal
[patent_app_type] => utility
[patent_app_number] => 17/027747
[patent_app_country] => US
[patent_app_date] => 2020-09-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 2
[patent_figures_cnt] => 2
[patent_no_of_words] => 3616
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 93
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17027747
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/027747 | His-MBP tagged DNA endonuclease for facilitated enzyme removal | Sep 21, 2020 | Issued |
Array
(
[id] => 16855163
[patent_doc_number] => 20210155908
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-27
[patent_title] => RECOMBINANT POLYMERASES WITH INCREASED PHOTOTOLERANCE
[patent_app_type] => utility
[patent_app_number] => 17/025722
[patent_app_country] => US
[patent_app_date] => 2020-09-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 26418
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17025722
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/025722 | Recombinant polymerases with increased phototolerance | Sep 17, 2020 | Issued |
Array
(
[id] => 17960048
[patent_doc_number] => 20220340628
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-10-27
[patent_title] => TAG PROTEIN FOR INCREASING WATER SOLUBILITY AND HEAT STABILITY OF TARGET PROTEIN, AND FUSION PROTEIN COMPRISING SAME
[patent_app_type] => utility
[patent_app_number] => 17/761709
[patent_app_country] => US
[patent_app_date] => 2020-09-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6814
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 27
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17761709
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/761709 | Tag protein for increasing water solubility and heat stability of target protein, and fusion protein comprising same | Sep 17, 2020 | Issued |
Array
(
[id] => 16762657
[patent_doc_number] => 20210108238
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-04-15
[patent_title] => PROCESSES FOR THE PRODUCTION OF TRYPTAMINES
[patent_app_type] => utility
[patent_app_number] => 17/012737
[patent_app_country] => US
[patent_app_date] => 2020-09-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13376
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17012737
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/012737 | Processes for the production of tryptamines | Sep 3, 2020 | Issued |
Array
(
[id] => 16525541
[patent_doc_number] => 20200399621
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-12-24
[patent_title] => Engineered CRISPR-Cas9 nucleases with Altered PAM Specificity
[patent_app_type] => utility
[patent_app_number] => 17/012697
[patent_app_country] => US
[patent_app_date] => 2020-09-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 27295
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -29
[patent_words_short_claim] => 27
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17012697
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/012697 | Engineered CRISPR-Cas9 nucleases with altered PAM specificity | Sep 3, 2020 | Issued |
Array
(
[id] => 18020606
[patent_doc_number] => 20220372105
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-11-24
[patent_title] => ALLOGENEIC CELL COMPOSITIONS AND METHODS OF USE
[patent_app_type] => utility
[patent_app_number] => 17/640176
[patent_app_country] => US
[patent_app_date] => 2020-09-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 43545
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -40
[patent_words_short_claim] => 163
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17640176
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/640176 | ALLOGENEIC CELL COMPOSITIONS AND METHODS OF USE | Sep 2, 2020 | Pending |