
Christopher Y. Kim
Examiner (ID: 18274)
| Most Active Art Unit | 1801 |
| Art Unit(s) | 1744, 2876, 1801, 1312 |
| Total Applications | 419 |
| Issued Applications | 342 |
| Pending Applications | 16 |
| Abandoned Applications | 61 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 17548096
[patent_doc_number] => 20220119437
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-04-21
[patent_title] => SYNTHESIS OF OLIGOSACCHARIDES
[patent_app_type] => utility
[patent_app_number] => 17/646093
[patent_app_country] => US
[patent_app_date] => 2021-12-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10934
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -7
[patent_words_short_claim] => 40
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17646093
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/646093 | Synthesis of oligosaccharides | Dec 26, 2021 | Issued |
Array
(
[id] => 17595701
[patent_doc_number] => 20220145275
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-05-12
[patent_title] => Engineered CRISPR-Cas9 nucleases with Altered PAM Specificity
[patent_app_type] => utility
[patent_app_number] => 17/456092
[patent_app_country] => US
[patent_app_date] => 2021-11-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 28898
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -25
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17456092
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/456092 | Engineered CRISPR-Cas9 nucleases with altered PAM specificity | Nov 21, 2021 | Issued |
Array
(
[id] => 17595701
[patent_doc_number] => 20220145275
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-05-12
[patent_title] => Engineered CRISPR-Cas9 nucleases with Altered PAM Specificity
[patent_app_type] => utility
[patent_app_number] => 17/456092
[patent_app_country] => US
[patent_app_date] => 2021-11-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 28898
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -25
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17456092
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/456092 | Engineered CRISPR-Cas9 nucleases with altered PAM specificity | Nov 21, 2021 | Issued |
Array
(
[id] => 17930139
[patent_doc_number] => 20220325264
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-10-13
[patent_title] => MODIFIED NUCLEIC ACID EDITING SYSTEMS FOR TETHERING DONOR DNA
[patent_app_type] => utility
[patent_app_number] => 17/531450
[patent_app_country] => US
[patent_app_date] => 2021-11-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11240
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -23
[patent_words_short_claim] => 49
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17531450
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/531450 | MODIFIED NUCLEIC ACID EDITING SYSTEMS FOR TETHERING DONOR DNA | Nov 18, 2021 | Abandoned |
Array
(
[id] => 18862282
[patent_doc_number] => 20230416718
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-12-28
[patent_title] => THERMOTOLERANT PROTEIN GLUTAMINASE
[patent_app_type] => utility
[patent_app_number] => 18/037934
[patent_app_country] => US
[patent_app_date] => 2021-11-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10454
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -8
[patent_words_short_claim] => 142
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18037934
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/037934 | THERMOTOLERANT PROTEIN GLUTAMINASE | Nov 18, 2021 | Pending |
Array
(
[id] => 18794134
[patent_doc_number] => 11827891
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-11-28
[patent_title] => Protease deficient filamentous fungal cells and methods of use thereof
[patent_app_type] => utility
[patent_app_number] => 17/529931
[patent_app_country] => US
[patent_app_date] => 2021-11-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 46
[patent_figures_cnt] => 91
[patent_no_of_words] => 64818
[patent_no_of_claims] => 28
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 131
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17529931
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/529931 | Protease deficient filamentous fungal cells and methods of use thereof | Nov 17, 2021 | Issued |
Array
(
[id] => 17444111
[patent_doc_number] => 20220064616
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-03-03
[patent_title] => ENGINEERED GRAM-NEGATIVE ENDOLYSINS
[patent_app_type] => utility
[patent_app_number] => 17/529246
[patent_app_country] => US
[patent_app_date] => 2021-11-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12669
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 19
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17529246
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/529246 | ENGINEERED GRAM-NEGATIVE ENDOLYSINS | Nov 16, 2021 | Abandoned |
Array
(
[id] => 17946126
[patent_doc_number] => 20220333143
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-10-20
[patent_title] => MICROORGANISMS AND METHODS FOR PRODUCTION OF SPECIFIC LENGTH FATTY ALCOHOLS AND RELATED COMPOUNDS
[patent_app_type] => utility
[patent_app_number] => 17/526632
[patent_app_country] => US
[patent_app_date] => 2021-11-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 62731
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17526632
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/526632 | MICROORGANISMS AND METHODS FOR PRODUCTION OF SPECIFIC LENGTH FATTY ALCOHOLS AND RELATED COMPOUNDS | Nov 14, 2021 | Abandoned |
Array
(
[id] => 17890752
[patent_doc_number] => 11453705
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-09-27
[patent_title] => Multivalent particles compositions and methods of use
[patent_app_type] => utility
[patent_app_number] => 17/514572
[patent_app_country] => US
[patent_app_date] => 2021-10-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 41
[patent_figures_cnt] => 64
[patent_no_of_words] => 43143
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 136
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17514572
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/514572 | Multivalent particles compositions and methods of use | Oct 28, 2021 | Issued |
Array
(
[id] => 17399915
[patent_doc_number] => 20220042005
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-10
[patent_title] => METHOD OF PREPARING AN ORGANIC-INORGANIC HYBRID NANOFLOWER
[patent_app_type] => utility
[patent_app_number] => 17/497899
[patent_app_country] => US
[patent_app_date] => 2021-10-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4707
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17497899
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/497899 | Method of preparing an organic-inorganic hybrid nanoflower | Oct 8, 2021 | Issued |
Array
(
[id] => 17336425
[patent_doc_number] => 20220002756
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-01-06
[patent_title] => RNA-GUIDED NUCLEASES AND ACTIVE FRAGMENTS AND VARIANTS THEREOF AND METHODS OF USE
[patent_app_type] => utility
[patent_app_number] => 17/478374
[patent_app_country] => US
[patent_app_date] => 2021-09-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 39477
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 96
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17478374
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/478374 | RNA-guided nucleases and active fragments and variants thereof and methods of use | Sep 16, 2021 | Issued |
Array
(
[id] => 17453232
[patent_doc_number] => 11268078
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2022-03-08
[patent_title] => Nucleic acid-guided nickases
[patent_app_type] => utility
[patent_app_number] => 17/463581
[patent_app_country] => US
[patent_app_date] => 2021-09-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 16
[patent_figures_cnt] => 18
[patent_no_of_words] => 7290
[patent_no_of_claims] => 30
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 33
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17463581
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/463581 | Nucleic acid-guided nickases | Aug 31, 2021 | Issued |
Array
(
[id] => 18724369
[patent_doc_number] => 20230338511
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-10-26
[patent_title] => SINGLE-CHAIN CORONAVIRUS VIRAL MEMBRANE PROTEIN COMPLEXES
[patent_app_type] => utility
[patent_app_number] => 18/023891
[patent_app_country] => US
[patent_app_date] => 2021-08-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13925
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -52
[patent_words_short_claim] => 20
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18023891
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/023891 | SINGLE-CHAIN CORONAVIRUS VIRAL MEMBRANE PROTEIN COMPLEXES | Aug 26, 2021 | Pending |
Array
(
[id] => 18724369
[patent_doc_number] => 20230338511
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-10-26
[patent_title] => SINGLE-CHAIN CORONAVIRUS VIRAL MEMBRANE PROTEIN COMPLEXES
[patent_app_type] => utility
[patent_app_number] => 18/023891
[patent_app_country] => US
[patent_app_date] => 2021-08-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13925
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -52
[patent_words_short_claim] => 20
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18023891
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/023891 | SINGLE-CHAIN CORONAVIRUS VIRAL MEMBRANE PROTEIN COMPLEXES | Aug 26, 2021 | Pending |
Array
(
[id] => 18675545
[patent_doc_number] => 20230313152
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-10-05
[patent_title] => C-TERMINAL TRUNCATED GDE FOR THE TREATMENT OF GLYCOGEN STORAGE DISEASE III
[patent_app_type] => utility
[patent_app_number] => 18/022534
[patent_app_country] => US
[patent_app_date] => 2021-08-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 32382
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18022534
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/022534 | C-TERMINAL TRUNCATED GDE FOR THE TREATMENT OF GLYCOGEN STORAGE DISEASE III | Aug 22, 2021 | Pending |
Array
(
[id] => 19291802
[patent_doc_number] => 12031150
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-07-09
[patent_title] => Methods, compositions and kits for increasing genome editing efficiency
[patent_app_type] => utility
[patent_app_number] => 17/407421
[patent_app_country] => US
[patent_app_date] => 2021-08-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 36303
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 176
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17407421
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/407421 | Methods, compositions and kits for increasing genome editing efficiency | Aug 19, 2021 | Issued |
Array
(
[id] => 17482524
[patent_doc_number] => 20220090028
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-03-24
[patent_title] => ACYL-ACP Reductase With Improved Properties
[patent_app_type] => utility
[patent_app_number] => 17/405685
[patent_app_country] => US
[patent_app_date] => 2021-08-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 30364
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17405685
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/405685 | ACYL-ACP Reductase With Improved Properties | Aug 17, 2021 | Abandoned |
Array
(
[id] => 18725820
[patent_doc_number] => 20230340041
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-10-26
[patent_title] => SHANK3 GENE THERAPY APPROACHES
[patent_app_type] => utility
[patent_app_number] => 18/021693
[patent_app_country] => US
[patent_app_date] => 2021-08-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 21276
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -73
[patent_words_short_claim] => 17
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18021693
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/021693 | SHANK3 GENE THERAPY APPROACHES | Aug 16, 2021 | Pending |
Array
(
[id] => 17704973
[patent_doc_number] => 20220204979
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-06-30
[patent_title] => METHODS FOR PRODUCING BIOCHEMICALS USING ENZYME GENES DERIVED FROM A STRAIN OF BREVUNDIMONAS, AND COMPOSITIONS MADE THEREBY
[patent_app_type] => utility
[patent_app_number] => 17/395421
[patent_app_country] => US
[patent_app_date] => 2021-08-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7423
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -7
[patent_words_short_claim] => 42
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17395421
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/395421 | Methods for producing biochemicals using enzyme genes derived from a strain of | Aug 4, 2021 | Issued |
Array
(
[id] => 17385942
[patent_doc_number] => 20220033794
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-03
[patent_title] => ACTIVE LOW MOLECULAR WEIGHT VARIANTS OF ANGIOTENSIN CONVERTING ENZYME 2 (ACE2)
[patent_app_type] => utility
[patent_app_number] => 17/391680
[patent_app_country] => US
[patent_app_date] => 2021-08-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 23504
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17391680
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/391680 | Active low molecular weight variants of angiotensin converting enzyme 2 (ACE2) | Aug 1, 2021 | Issued |