Daniel W Howell
Examiner (ID: 4716, Phone: (571)272-4478 , Office: P/3722 )
Most Active Art Unit | 3722 |
Art Unit(s) | 3202, 3722, 3204, 3209, 3626, 2899, 3726 |
Total Applications | 3014 |
Issued Applications | 2543 |
Pending Applications | 118 |
Abandoned Applications | 353 |
Applications
Application number | Title of the application | Filing Date | Status |
---|---|---|---|
Array
(
[id] => 16855239
[patent_doc_number] => 20210155984
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-27
[patent_title] => HIGHLY SENSITIVE IN VITRO ASSAYS TO DEFINE SUBSTRATE PREFERENCES AND SITES OF NUCLEIC-ACID BINDING, MODIFYING, AND CLEAVING AGENTS
[patent_app_type] => utility
[patent_app_number] => 17/107832
[patent_app_country] => US
[patent_app_date] => 2020-11-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11200
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17107832
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/107832 | Highly sensitive in vitro assays to define substrate preferences and sites of nucleic-acid binding, modifying, and cleaving agents | Nov 29, 2020 | Issued |
Array
(
[id] => 16885745
[patent_doc_number] => 20210171940
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-06-10
[patent_title] => MAGNETIC CAPTURE BEAD MEDIATED MOLECULAR BARCODING OF NUCLEIC ACID TARGETS IN SINGLE PARTICLES AND COMPOSITIONS FOR USE IN THE SAME
[patent_app_type] => utility
[patent_app_number] => 17/098912
[patent_app_country] => US
[patent_app_date] => 2020-11-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 29644
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17098912
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/098912 | MAGNETIC CAPTURE BEAD MEDIATED MOLECULAR BARCODING OF NUCLEIC ACID TARGETS IN SINGLE PARTICLES AND COMPOSITIONS FOR USE IN THE SAME | Nov 15, 2020 | Pending |
Array
(
[id] => 16901128
[patent_doc_number] => 20210180044
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-06-17
[patent_title] => METHODS AND SYSTEMS FOR MOLECULAR COMPOSITION GENERATION
[patent_app_type] => utility
[patent_app_number] => 17/093050
[patent_app_country] => US
[patent_app_date] => 2020-11-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 31239
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 78
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17093050
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/093050 | Methods and systems for molecular composition generation | Nov 8, 2020 | Issued |
Array
(
[id] => 16808262
[patent_doc_number] => 20210130815
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-06
[patent_title] => Evaluating Genomic Variation Using Repetitive Nucleic Acid Sequences
[patent_app_type] => utility
[patent_app_number] => 17/090454
[patent_app_country] => US
[patent_app_date] => 2020-11-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10287
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 49
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17090454
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/090454 | Evaluating Genomic Variation Using Repetitive Nucleic Acid Sequences | Nov 4, 2020 | Pending |
Array
(
[id] => 19564943
[patent_doc_number] => 12139705
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-11-12
[patent_title] => Deep learning enabled spatial optical barcodes for pooled library screens
[patent_app_type] => utility
[patent_app_number] => 17/088594
[patent_app_country] => US
[patent_app_date] => 2020-11-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 15
[patent_figures_cnt] => 25
[patent_no_of_words] => 21193
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 368
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17088594
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/088594 | Deep learning enabled spatial optical barcodes for pooled library screens | Nov 3, 2020 | Issued |
Array
(
[id] => 16750933
[patent_doc_number] => 20210102942
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-04-08
[patent_title] => High-throughput method to screen cognate T cell and epitope reactivities in primary human cells
[patent_app_type] => utility
[patent_app_number] => 17/062375
[patent_app_country] => US
[patent_app_date] => 2020-10-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 25480
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -26
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17062375
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/062375 | High-throughput method to screen cognate T cell and epitope reactivities in primary human cells | Oct 1, 2020 | Pending |
Array
(
[id] => 17082465
[patent_doc_number] => 20210277471
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-09-09
[patent_title] => CELL POPULATION ANALYSIS USING SINGLE NUCLEOTIDE POLYMORPHISMS FROM SINGLE CELL TRANSCRIPTOMES
[patent_app_type] => utility
[patent_app_number] => 17/029756
[patent_app_country] => US
[patent_app_date] => 2020-09-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 47801
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17029756
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/029756 | CELL POPULATION ANALYSIS USING SINGLE NUCLEOTIDE POLYMORPHISMS FROM SINGLE CELL TRANSCRIPTOMES | Sep 22, 2020 | Pending |
Array
(
[id] => 16793286
[patent_doc_number] => 20210123103
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-04-29
[patent_title] => ANALYSIS OF NUCLEIC ACID SEQUENCES
[patent_app_type] => utility
[patent_app_number] => 16/898984
[patent_app_country] => US
[patent_app_date] => 2020-06-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 31982
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16898984
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/898984 | Analysis of nucleic acid sequences | Jun 10, 2020 | Issued |
Array
(
[id] => 16839821
[patent_doc_number] => 20210147833
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-20
[patent_title] => SYSTEMS AND METHODS FOR INFORMATION STORAGE AND RETRIEVAL USING FLOW CELLS
[patent_app_type] => utility
[patent_app_number] => 17/254470
[patent_app_country] => US
[patent_app_date] => 2020-05-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 23874
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -34
[patent_words_short_claim] => 141
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17254470
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/254470 | SYSTEMS AND METHODS FOR INFORMATION STORAGE AND RETRIEVAL USING FLOW CELLS | May 25, 2020 | Pending |
Array
(
[id] => 16688772
[patent_doc_number] => 20210071248
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-03-11
[patent_title] => HIGHLY SENSITIVE IN VITRO ASSAYS TO DEFINE SUBSTRATE PREFERENCES AND SITES OF NUCLEIC-ACID BINDING, MODIFYING, AND CLEAVING AGENTS
[patent_app_type] => utility
[patent_app_number] => 16/852257
[patent_app_country] => US
[patent_app_date] => 2020-04-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11205
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -8
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16852257
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/852257 | Highly sensitive in vitro assays to define substrate preferences and sites of nucleic acid cleaving agents | Apr 16, 2020 | Issued |
Array
(
[id] => 16298119
[patent_doc_number] => 20200283842
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-09-10
[patent_title] => ENZYME SCREENING METHODS
[patent_app_type] => utility
[patent_app_number] => 16/798064
[patent_app_country] => US
[patent_app_date] => 2020-02-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 25143
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16798064
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/798064 | ENZYME SCREENING METHODS | Feb 20, 2020 | Pending |
Array
(
[id] => 15866901
[patent_doc_number] => 20200140854
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-05-07
[patent_title] => METHODS FOR COMPARING EFFICACY OF DONOR MOLECULES
[patent_app_type] => utility
[patent_app_number] => 16/670162
[patent_app_country] => US
[patent_app_date] => 2019-10-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12663
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -25
[patent_words_short_claim] => 79
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16670162
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/670162 | METHODS FOR COMPARING EFFICACY OF DONOR MOLECULES | Oct 30, 2019 | Pending |
Array
(
[id] => 18451972
[patent_doc_number] => 20230193251
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-22
[patent_title] => IMPROVED HIGH-THROUGHPUT COMBINATORIAL GENETIC MODIFICATION SYSTEM AND OPTIMIZED CAS9 ENZYME VARIANTS
[patent_app_type] => utility
[patent_app_number] => 17/278189
[patent_app_country] => US
[patent_app_date] => 2019-09-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 34023
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -29
[patent_words_short_claim] => 43
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17278189
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/278189 | IMPROVED HIGH-THROUGHPUT COMBINATORIAL GENETIC MODIFICATION SYSTEM AND OPTIMIZED CAS9 ENZYME VARIANTS | Sep 16, 2019 | Pending |
Array
(
[id] => 15436121
[patent_doc_number] => 20200032244
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-01-30
[patent_title] => TARGET ENRICHMENT BY UNIDIRECTIONAL DUAL PROBE PRIMER EXTENSION
[patent_app_type] => utility
[patent_app_number] => 16/542127
[patent_app_country] => US
[patent_app_date] => 2019-08-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18539
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 121
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16542127
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/542127 | TARGET ENRICHMENT BY UNIDIRECTIONAL DUAL PROBE PRIMER EXTENSION | Aug 14, 2019 | Pending |
Array
(
[id] => 16932830
[patent_doc_number] => 20210198719
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-07-01
[patent_title] => NUCLEIC ACID SEQUENCE ENRICHMENT BY DEFINED NUCLEIC ACID-DIRECTED ENDONUCLEASE DIGESTION
[patent_app_type] => utility
[patent_app_number] => 17/265499
[patent_app_country] => US
[patent_app_date] => 2019-08-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11613
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 108
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17265499
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/265499 | Nucleic acid sequence enrichment by defined nucleic acid-directed endonuclease digestion | Aug 5, 2019 | Issued |
Array
(
[id] => 17627670
[patent_doc_number] => 20220162685
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-05-26
[patent_title] => METHOD FOR ANALYZING CELL SAMPLE HETEROGENEITY
[patent_app_type] => utility
[patent_app_number] => 17/260572
[patent_app_country] => US
[patent_app_date] => 2019-07-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14234
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17260572
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/260572 | Method for analyzing cell sample heterogeneity | Jul 16, 2019 | Issued |
Array
(
[id] => 16932771
[patent_doc_number] => 20210198660
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-07-01
[patent_title] => COMPOSITIONS AND METHODS FOR MAKING GUIDE NUCLEIC ACIDS
[patent_app_type] => utility
[patent_app_number] => 17/057390
[patent_app_country] => US
[patent_app_date] => 2019-06-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 41563
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -87
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17057390
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/057390 | COMPOSITIONS AND METHODS FOR MAKING GUIDE NUCLEIC ACIDS | Jun 6, 2019 | Pending |
Array
(
[id] => 16505178
[patent_doc_number] => 20200384434
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-12-10
[patent_title] => REVERSING BIAS IN POLYMER SYNTHESIS ELECTRODE ARRAY
[patent_app_type] => utility
[patent_app_number] => 16/435363
[patent_app_country] => US
[patent_app_date] => 2019-06-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12067
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 57
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16435363
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/435363 | REVERSING BIAS IN POLYMER SYNTHESIS ELECTRODE ARRAY | Jun 6, 2019 | Pending |
Array
(
[id] => 16614943
[patent_doc_number] => 20210033596
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-02-04
[patent_title] => Methods for High-Content Drug Screening
[patent_app_type] => utility
[patent_app_number] => 17/046099
[patent_app_country] => US
[patent_app_date] => 2019-04-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19457
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -98
[patent_words_short_claim] => 190
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17046099
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/046099 | Methods for high-content drug screening | Apr 24, 2019 | Issued |
Array
(
[id] => 16660412
[patent_doc_number] => 20210057049
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-02-25
[patent_title] => Method in Bioprocess System
[patent_app_type] => utility
[patent_app_number] => 17/045775
[patent_app_country] => US
[patent_app_date] => 2019-04-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5224
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -29
[patent_words_short_claim] => 16
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17045775
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/045775 | Method in Bioprocess System | Apr 23, 2019 | Pending |