
David Robert Vincent
Examiner (ID: 2459)
| Most Active Art Unit | 2123 |
| Art Unit(s) | 2123, 2129, 2615, 2732, 2713, 2787, 2661, 2124, 2731, 3628 |
| Total Applications | 1744 |
| Issued Applications | 1408 |
| Pending Applications | 132 |
| Abandoned Applications | 219 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 16527790
[patent_doc_number] => 20200401870
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-12-24
[patent_title] => SYSTEM AND METHOD FOR DESIGNING EFFICIENT SUPER RESOLUTION DEEP CONVOLUTIONAL NEURAL NETWORKS BY CASCADE NETWORK TRAINING, CASCADE NETWORK TRIMMING, AND DILATED CONVOLUTIONS
[patent_app_type] => utility
[patent_app_number] => 17/007739
[patent_app_country] => US
[patent_app_date] => 2020-08-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8924
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 49
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17007739
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/007739 | System and method for designing efficient super resolution deep convolutional neural networks by cascade network training, cascade network trimming, and dilated convolutions | Aug 30, 2020 | Issued |
Array
(
[id] => 16659739
[patent_doc_number] => 20210056376
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-02-25
[patent_title] => TRAINING MACHINE LEARNING MODELS FOR AUTOMATED COMPOSITION GENERATION
[patent_app_type] => utility
[patent_app_number] => 16/998583
[patent_app_country] => US
[patent_app_date] => 2020-08-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 23769
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 73
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16998583
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/998583 | TRAINING MACHINE LEARNING MODELS FOR AUTOMATED COMPOSITION GENERATION | Aug 19, 2020 | Abandoned |
Array
(
[id] => 18703724
[patent_doc_number] => 11790238
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-10-17
[patent_title] => Multi-task neural networks with task-specific paths
[patent_app_type] => utility
[patent_app_number] => 16/995655
[patent_app_country] => US
[patent_app_date] => 2020-08-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 6
[patent_no_of_words] => 10259
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 304
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16995655
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/995655 | Multi-task neural networks with task-specific paths | Aug 16, 2020 | Issued |
Array
(
[id] => 16470821
[patent_doc_number] => 20200372358
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-26
[patent_title] => ATTENTION-BASED SEQUENCE TRANSDUCTION NEURAL NETWORKS
[patent_app_type] => utility
[patent_app_number] => 16/988547
[patent_app_country] => US
[patent_app_date] => 2020-08-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8203
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 220
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16988547
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/988547 | Attention-based sequence transduction neural networks | Aug 6, 2020 | Issued |
Array
(
[id] => 16585221
[patent_doc_number] => 20210019623
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-01-21
[patent_title] => ATTENTION-BASED SEQUENCE TRANSDUCTION NEURAL NETWORKS
[patent_app_type] => utility
[patent_app_number] => 16/988518
[patent_app_country] => US
[patent_app_date] => 2020-08-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8203
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 226
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16988518
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/988518 | Attention-based sequence transduction neural networks | Aug 6, 2020 | Issued |
Array
(
[id] => 17402717
[patent_doc_number] => 20220044808
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-10
[patent_title] => PREDICTIVE MONITORING OF THE GLUCOSE-INSULIN ENDOCRINE METABOLIC REGULATORY SYSTEM
[patent_app_type] => utility
[patent_app_number] => 16/985759
[patent_app_country] => US
[patent_app_date] => 2020-08-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 33193
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 279
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16985759
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/985759 | Predictive monitoring of the glucose-insulin endocrine metabolic regulatory system | Aug 4, 2020 | Issued |
Array
(
[id] => 18697506
[patent_doc_number] => 20230327969
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-10-12
[patent_title] => QUANTUM COMPUTING DEVICE FOR DETERMINING A NETWORK PARAMETER
[patent_app_type] => utility
[patent_app_number] => 18/018537
[patent_app_country] => US
[patent_app_date] => 2020-07-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7436
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18018537
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/018537 | QUANTUM COMPUTING DEVICE FOR DETERMINING A NETWORK PARAMETER | Jul 28, 2020 | Pending |
Array
(
[id] => 18697506
[patent_doc_number] => 20230327969
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-10-12
[patent_title] => QUANTUM COMPUTING DEVICE FOR DETERMINING A NETWORK PARAMETER
[patent_app_type] => utility
[patent_app_number] => 18/018537
[patent_app_country] => US
[patent_app_date] => 2020-07-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7436
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18018537
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/018537 | QUANTUM COMPUTING DEVICE FOR DETERMINING A NETWORK PARAMETER | Jul 28, 2020 | Pending |
Array
(
[id] => 16722744
[patent_doc_number] => 20210089891
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-03-25
[patent_title] => DEEP REINFORCEMENT LEARNING BASED METHOD FOR SURREPTITIOUSLY GENERATING SIGNALS TO FOOL A RECURRENT NEURAL NETWORK
[patent_app_type] => utility
[patent_app_number] => 16/937503
[patent_app_country] => US
[patent_app_date] => 2020-07-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5785
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 135
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16937503
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/937503 | Deep reinforcement learning based method for surreptitiously generating signals to fool a recurrent neural network | Jul 22, 2020 | Issued |
Array
(
[id] => 16470820
[patent_doc_number] => 20200372357
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-26
[patent_title] => ATTENTION-BASED SEQUENCE TRANSDUCTION NEURAL NETWORKS
[patent_app_type] => utility
[patent_app_number] => 16/932422
[patent_app_country] => US
[patent_app_date] => 2020-07-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8179
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16932422
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/932422 | Attention-based sequence transduction neural networks | Jul 16, 2020 | Issued |
Array
(
[id] => 18839493
[patent_doc_number] => 11847567
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2023-12-19
[patent_title] => Loss-aware replication of neural network layers
[patent_app_type] => utility
[patent_app_number] => 16/923003
[patent_app_country] => US
[patent_app_date] => 2020-07-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 33
[patent_figures_cnt] => 37
[patent_no_of_words] => 44049
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 247
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16923003
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/923003 | Loss-aware replication of neural network layers | Jul 6, 2020 | Issued |
Array
(
[id] => 16379258
[patent_doc_number] => 20200328101
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-10-15
[patent_title] => SEARCH APPARATUS AND SEARCH METHOD
[patent_app_type] => utility
[patent_app_number] => 16/911669
[patent_app_country] => US
[patent_app_date] => 2020-06-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16109
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 290
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16911669
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/911669 | SEARCH APPARATUS AND SEARCH METHOD | Jun 24, 2020 | Abandoned |
Array
(
[id] => 17779952
[patent_doc_number] => 20220246302
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-08-04
[patent_title] => DATA ANALYSIS APPARATUS, DATA ANALYSIS METHOD, AND DATA ANALYSIS PROGRAM
[patent_app_type] => utility
[patent_app_number] => 17/621884
[patent_app_country] => US
[patent_app_date] => 2020-06-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5130
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 154
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17621884
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/621884 | DATA ANALYSIS APPARATUS, DATA ANALYSIS METHOD, AND DATA ANALYSIS PROGRAM | Jun 21, 2020 | Abandoned |
Array
(
[id] => 18585013
[patent_doc_number] => 20230267277
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-08-24
[patent_title] => SYSTEMS AND METHODS FOR USING DOCUMENT ACTIVITY LOGS TO TRAIN MACHINE-LEARNED MODELS FOR DETERMINING DOCUMENT RELEVANCE
[patent_app_type] => utility
[patent_app_number] => 18/010727
[patent_app_country] => US
[patent_app_date] => 2020-06-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18569
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 171
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18010727
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/010727 | SYSTEMS AND METHODS FOR USING DOCUMENT ACTIVITY LOGS TO TRAIN MACHINE-LEARNED MODELS FOR DETERMINING DOCUMENT RELEVANCE | Jun 14, 2020 | Pending |
Array
(
[id] => 18585013
[patent_doc_number] => 20230267277
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-08-24
[patent_title] => SYSTEMS AND METHODS FOR USING DOCUMENT ACTIVITY LOGS TO TRAIN MACHINE-LEARNED MODELS FOR DETERMINING DOCUMENT RELEVANCE
[patent_app_type] => utility
[patent_app_number] => 18/010727
[patent_app_country] => US
[patent_app_date] => 2020-06-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18569
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 171
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18010727
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/010727 | SYSTEMS AND METHODS FOR USING DOCUMENT ACTIVITY LOGS TO TRAIN MACHINE-LEARNED MODELS FOR DETERMINING DOCUMENT RELEVANCE | Jun 14, 2020 | Pending |
Array
(
[id] => 16285579
[patent_doc_number] => 20200279181
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-09-03
[patent_title] => Multi-Platform Machine Learning Systems
[patent_app_type] => utility
[patent_app_number] => 16/878120
[patent_app_country] => US
[patent_app_date] => 2020-05-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11367
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 153
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16878120
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/878120 | Multi-platform machine learning systems | May 18, 2020 | Issued |
Array
(
[id] => 17231200
[patent_doc_number] => 20210357757
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-11-18
[patent_title] => CUSTOMIZING AN ARTIFICIAL INTELLIGENCE MODEL TO PROCESS A DATA SET
[patent_app_type] => utility
[patent_app_number] => 16/875792
[patent_app_country] => US
[patent_app_date] => 2020-05-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7333
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 97
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16875792
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/875792 | Customizing an artificial intelligence model to process a data set | May 14, 2020 | Issued |
Array
(
[id] => 16378549
[patent_doc_number] => 20200327391
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-10-15
[patent_title] => SYSTEM AND METHOD FOR PARALLELIZING CONVOLUTIONAL NEURAL NETWORKS
[patent_app_type] => utility
[patent_app_number] => 16/859815
[patent_app_country] => US
[patent_app_date] => 2020-04-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 2783
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 156
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16859815
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/859815 | System and method for parallelizing convolutional neural networks | Apr 26, 2020 | Issued |
Array
(
[id] => 16363641
[patent_doc_number] => 20200320392
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-10-08
[patent_title] => OPTIMIZATION PROCESSING FOR NEURAL NETWORK MODEL
[patent_app_type] => utility
[patent_app_number] => 16/850792
[patent_app_country] => US
[patent_app_date] => 2020-04-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5806
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 132
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16850792
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/850792 | Optimization processing for neural network model | Apr 15, 2020 | Issued |
Array
(
[id] => 16378598
[patent_doc_number] => 20200327440
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-10-15
[patent_title] => Discrete Optimization Using Continuous Latent Space
[patent_app_type] => utility
[patent_app_number] => 16/844011
[patent_app_country] => US
[patent_app_date] => 2020-04-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8726
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 280
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16844011
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/844011 | Discrete Optimization Using Continuous Latent Space | Apr 8, 2020 | Abandoned |