| Application number | Title of the application | Filing Date | Status |
|---|
Array
(
[id] => 8782278
[patent_doc_number] => 20130104253
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2013-04-25
[patent_title] => 'CYTOPLASMIC TRANSFER TO DE-DIFFERENTIATE RECIPIENT CELLS'
[patent_app_type] => utility
[patent_app_number] => 13/617988
[patent_app_country] => US
[patent_app_date] => 2012-09-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6817
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 5
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13617988
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/617988 | CYTOPLASMIC TRANSFER TO DE-DIFFERENTIATE RECIPIENT CELLS | Sep 13, 2012 | Abandoned |
Array
(
[id] => 8684359
[patent_doc_number] => 20130052643
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2013-02-28
[patent_title] => 'METHOD FOR GENERATING NUCLEAR REPROGRAMMED CELL, AND USE THEREOF'
[patent_app_type] => utility
[patent_app_number] => 13/597854
[patent_app_country] => US
[patent_app_date] => 2012-08-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 6
[patent_no_of_words] => 10419
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13597854
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/597854 | Nuclear reprogrammed cells generated by introduction of a histone H2aa or TH2A gene, a histone H2ba or TH2B gene, or a phosphorylation-mimic of histone chaperon Npm2 gene, an Oct family gene and a klf family gene into a mammalian somatic cell | Aug 28, 2012 | Issued |
Array
(
[id] => 8566011
[patent_doc_number] => 20120328582
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2012-12-27
[patent_title] => 'Primate Embryonic Stem Cells'
[patent_app_type] => utility
[patent_app_number] => 13/595587
[patent_app_country] => US
[patent_app_date] => 2012-08-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 10028
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13595587
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/595587 | Primate Embryonic Stem Cells | Aug 26, 2012 | Abandoned |
Array
(
[id] => 8707511
[patent_doc_number] => 20130064800
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2013-03-14
[patent_title] => 'Tissue-Engineered Endothelial and Epithelial Implants Differentially and Synergistically Regulate Tissue Repair'
[patent_app_type] => utility
[patent_app_number] => 13/571494
[patent_app_country] => US
[patent_app_date] => 2012-08-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 13014
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13571494
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/571494 | Tissue-Engineered Endothelial and Epithelial Implants Differentially and Synergistically Regulate Tissue Repair | Aug 9, 2012 | Abandoned |
Array
(
[id] => 8431589
[patent_doc_number] => 20120253463
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2012-10-04
[patent_title] => 'METHODS OF GENERATING A TENDON TISSUE'
[patent_app_type] => utility
[patent_app_number] => 13/526633
[patent_app_country] => US
[patent_app_date] => 2012-06-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 22
[patent_figures_cnt] => 22
[patent_no_of_words] => 22648
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13526633
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/526633 | Methods of generating tendon tissue in vitro from connective tissue progenitor cells | Jun 18, 2012 | Issued |
Array
(
[id] => 8359080
[patent_doc_number] => 20120214232
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2012-08-23
[patent_title] => 'METHODS OF CULTURING CELLS IN A MEDIUM COMPRISING TRANSFORMING GROWTH FACTOR BETA 1 AND BASIC FIBROBLAST GROWTH FACTOR'
[patent_app_type] => utility
[patent_app_number] => 13/466161
[patent_app_country] => US
[patent_app_date] => 2012-05-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 15454
[patent_no_of_claims] => 26
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13466161
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/466161 | Methods of culturing cells in a medium comprising transforming growth factor beta 1 and basic fibroblast growth factor | May 7, 2012 | Issued |
Array
(
[id] => 8476735
[patent_doc_number] => 20120276142
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2012-11-01
[patent_title] => 'NUCLEIC ACID SEQUENCES ENCODING AND COMPOSITIONS COMPRISING IGE SIGNAL PEPTIDE AND/OR IL-15 AND METHODS FOR USING THE SAME'
[patent_app_type] => utility
[patent_app_number] => 13/466015
[patent_app_country] => US
[patent_app_date] => 2012-05-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 20
[patent_figures_cnt] => 20
[patent_no_of_words] => 23108
[patent_no_of_claims] => 26
[patent_no_of_ind_claims] => 6
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13466015
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/466015 | NUCLEIC ACID SEQUENCES ENCODING AND COMPOSITIONS COMPRISING IGE SIGNAL PEPTIDE AND/OR IL-15 AND METHODS FOR USING THE SAME | May 6, 2012 | Abandoned |
Array
(
[id] => 11790184
[patent_doc_number] => 09399758
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2016-07-26
[patent_title] => 'SSEA3(+) pluripotent stem cell that can be isolated from body tissue'
[patent_app_type] => utility
[patent_app_number] => 13/435703
[patent_app_country] => US
[patent_app_date] => 2012-03-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 74
[patent_figures_cnt] => 74
[patent_no_of_words] => 28765
[patent_no_of_claims] => 2
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 57
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13435703
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/435703 | SSEA3(+) pluripotent stem cell that can be isolated from body tissue | Mar 29, 2012 | Issued |
Array
(
[id] => 8289833
[patent_doc_number] => 20120178161
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2012-07-12
[patent_title] => 'MEDIUM AND CULTURE OF EMBRYONIC STEM CELLS'
[patent_app_type] => utility
[patent_app_number] => 13/427548
[patent_app_country] => US
[patent_app_date] => 2012-03-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 23
[patent_figures_cnt] => 23
[patent_no_of_words] => 13664
[patent_no_of_claims] => 6
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13427548
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/427548 | Culture medium containing gamma-aminobutyric acid, pipecolic acid or lithium for the maintenance of stem cells in an undifferentiated state | Mar 21, 2012 | Issued |
Array
(
[id] => 8834355
[patent_doc_number] => 08450110
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2013-05-28
[patent_title] => 'Human neuronal progenitor cells co-expressing nestin and Pax6, and co-expressing NeuN or Tuj1'
[patent_app_type] => utility
[patent_app_number] => 13/425235
[patent_app_country] => US
[patent_app_date] => 2012-03-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 13506
[patent_no_of_claims] => 7
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 72
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13425235
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/425235 | Human neuronal progenitor cells co-expressing nestin and Pax6, and co-expressing NeuN or Tuj1 | Mar 19, 2012 | Issued |
Array
(
[id] => 8834355
[patent_doc_number] => 08450110
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2013-05-28
[patent_title] => 'Human neuronal progenitor cells co-expressing nestin and Pax6, and co-expressing NeuN or Tuj1'
[patent_app_type] => utility
[patent_app_number] => 13/425235
[patent_app_country] => US
[patent_app_date] => 2012-03-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 13506
[patent_no_of_claims] => 7
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 72
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13425235
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/425235 | Human neuronal progenitor cells co-expressing nestin and Pax6, and co-expressing NeuN or Tuj1 | Mar 19, 2012 | Issued |
Array
(
[id] => 8405418
[patent_doc_number] => 20120237481
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2012-09-20
[patent_title] => 'Incorporation of the B18R gene to enhance antitumor effect of virotherapy'
[patent_app_type] => utility
[patent_app_number] => 13/420734
[patent_app_country] => US
[patent_app_date] => 2012-03-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 4718
[patent_no_of_claims] => 34
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13420734
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/420734 | Incorporation of the B18R gene to enhance antitumor effect of virotherapy | Mar 14, 2012 | Abandoned |
Array
(
[id] => 8239810
[patent_doc_number] => 20120148551
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2012-06-14
[patent_title] => 'MARROW STEM CELL AND PANCREATIC BETA CELL FUSION CELL USEFUL FOR THE TREATMENT OF DIABETES'
[patent_app_type] => utility
[patent_app_number] => 13/399750
[patent_app_country] => US
[patent_app_date] => 2012-02-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 5766
[patent_no_of_claims] => 28
[patent_no_of_ind_claims] => 7
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13399750
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/399750 | Marrow stem cell and pancreatic β cell fusion cell useful for the treatment of diabetes | Feb 16, 2012 | Issued |
Array
(
[id] => 8569471
[patent_doc_number] => RE043876
[patent_country] => US
[patent_kind] => E1
[patent_issue_date] => 2012-12-25
[patent_title] => 'Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm'
[patent_app_type] => reissue
[patent_app_number] => 13/372641
[patent_app_country] => US
[patent_app_date] => 2012-02-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 49
[patent_figures_cnt] => 39
[patent_no_of_words] => 22207
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 112
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13372641
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/372641 | Cells expressing pluripotency markers and expressing markers characteristic of the definitive endoderm | Feb 13, 2012 | Issued |
| 13/366518 | Cytoplasmic transfer to de-differentiate recipient cells | Feb 5, 2012 | Abandoned |
Array
(
[id] => 8335082
[patent_doc_number] => 20120201792
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2012-08-09
[patent_title] => 'METHODS AND PRODUCTS FOR MANIPULATING HEMATOPOIETIC STEM CELLS'
[patent_app_type] => utility
[patent_app_number] => 13/363289
[patent_app_country] => US
[patent_app_date] => 2012-01-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22027
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13363289
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/363289 | METHODS AND PRODUCTS FOR MANIPULATING HEMATOPOIETIC STEM CELLS | Jan 30, 2012 | Abandoned |
Array
(
[id] => 10870107
[patent_doc_number] => 08895301
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2014-11-25
[patent_title] => 'Exogenous Pax6 nucleic acid expression in primate neural stem cells maintains proliferation without differentiation'
[patent_app_type] => utility
[patent_app_number] => 13/360326
[patent_app_country] => US
[patent_app_date] => 2012-01-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 34
[patent_figures_cnt] => 22
[patent_no_of_words] => 14391
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 35
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13360326
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/360326 | Exogenous Pax6 nucleic acid expression in primate neural stem cells maintains proliferation without differentiation | Jan 26, 2012 | Issued |
Array
(
[id] => 9996173
[patent_doc_number] => 09040771
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2015-05-26
[patent_title] => 'Nonhuman mammal whose mtDNA is from a nonhuman mammal resistant to a selected disease or disorder and whose nDNA is from a nonhuman donor mammal more susceptible to the selected disease or disorder'
[patent_app_type] => utility
[patent_app_number] => 13/360344
[patent_app_country] => US
[patent_app_date] => 2012-01-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 15
[patent_figures_cnt] => 25
[patent_no_of_words] => 8196
[patent_no_of_claims] => 7
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 81
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13360344
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/360344 | Nonhuman mammal whose mtDNA is from a nonhuman mammal resistant to a selected disease or disorder and whose nDNA is from a nonhuman donor mammal more susceptible to the selected disease or disorder | Jan 26, 2012 | Issued |
Array
(
[id] => 9271315
[patent_doc_number] => 20140026233
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2014-01-23
[patent_title] => 'TRANSGENIC PIG EXPRESSING STNFR1-FC GENES AND THE USES THEREOF'
[patent_app_type] => utility
[patent_app_number] => 13/980846
[patent_app_country] => US
[patent_app_date] => 2012-01-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 9042
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 5
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13980846
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/980846 | Transgenic pig expressing sTNFR1-Fc genes and the uses thereof | Jan 19, 2012 | Issued |
Array
(
[id] => 8759874
[patent_doc_number] => 08420393
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2013-04-16
[patent_title] => 'Generation of an autologous stem cell library from human oocytes parthenogenetically activated by high or low oxygen tension'
[patent_app_type] => utility
[patent_app_number] => 13/352252
[patent_app_country] => US
[patent_app_date] => 2012-01-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 18
[patent_figures_cnt] => 17
[patent_no_of_words] => 47842
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 179
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 13352252
[rel_patent_id] =>[rel_patent_doc_number] =>) 13/352252 | Generation of an autologous stem cell library from human oocytes parthenogenetically activated by high or low oxygen tension | Jan 16, 2012 | Issued |