Deepak R Rao
Examiner (ID: 14589, Phone: (571)272-0672 , Office: P/1624 )
Most Active Art Unit | 1624 |
Art Unit(s) | 1611, 1202, 1624 |
Total Applications | 3005 |
Issued Applications | 2132 |
Pending Applications | 170 |
Abandoned Applications | 702 |
Applications
Application number | Title of the application | Filing Date | Status |
---|---|---|---|
Array
(
[id] => 18019127
[patent_doc_number] => 20220370626
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-11-24
[patent_title] => FN3 Domain-siRNA Conjugates and Uses Thereof
[patent_app_type] => utility
[patent_app_number] => 17/720996
[patent_app_country] => US
[patent_app_date] => 2022-04-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 47647
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17720996
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/720996 | FN3 Domain-siRNA Conjugates and Uses Thereof | Apr 13, 2022 | Pending |
Array
(
[id] => 17805798
[patent_doc_number] => 20220257633
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-08-18
[patent_title] => METHOD OF TREATING AGE-RELATED MACULAR DEGENERATION
[patent_app_type] => utility
[patent_app_number] => 17/671688
[patent_app_country] => US
[patent_app_date] => 2022-02-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13639
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 32
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17671688
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/671688 | METHOD OF TREATING AGE-RELATED MACULAR DEGENERATION | Feb 14, 2022 | Abandoned |
Array
(
[id] => 17792465
[patent_doc_number] => 20220251556
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-08-11
[patent_title] => ENHANCED OLIGONUCLEOTIDES FOR INHIBITING RTEL1 EXPRESSION
[patent_app_type] => utility
[patent_app_number] => 17/590754
[patent_app_country] => US
[patent_app_date] => 2022-02-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 30035
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 22
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17590754
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/590754 | Enhanced oligonucleotides for inhibiting RTEL1 expression | Jan 31, 2022 | Issued |
Array
(
[id] => 17760102
[patent_doc_number] => 20220233714
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-07-28
[patent_title] => NANOGOLD-DNA BIOCONJUGATES AND METHODS OF USE THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/586560
[patent_app_country] => US
[patent_app_date] => 2022-01-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8535
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 34
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17586560
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/586560 | NANOGOLD-DNA BIOCONJUGATES AND METHODS OF USE THEREOF | Jan 26, 2022 | Pending |
Array
(
[id] => 17720756
[patent_doc_number] => 20220213476
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-07-07
[patent_title] => ORAL DELIVERY OF ANTISENSE CONJUGATES TARGETING PCSK9
[patent_app_type] => utility
[patent_app_number] => 17/547879
[patent_app_country] => US
[patent_app_date] => 2021-12-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 56101
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17547879
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/547879 | ORAL DELIVERY OF ANTISENSE CONJUGATES TARGETING PCSK9 | Dec 9, 2021 | Pending |
Array
(
[id] => 17655347
[patent_doc_number] => 20220175812
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-06-09
[patent_title] => POLYMER NANOPARTICLE AND DNA NANOSTRUCTURE COMPOSITIONS AND METHODS FOR NON-VIRAL DELIVERY
[patent_app_type] => utility
[patent_app_number] => 17/542055
[patent_app_country] => US
[patent_app_date] => 2021-12-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 23544
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 66
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17542055
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/542055 | POLYMER NANOPARTICLE AND DNA NANOSTRUCTURE COMPOSITIONS AND METHODS FOR NON-VIRAL DELIVERY | Dec 2, 2021 | Pending |
Array
(
[id] => 17673056
[patent_doc_number] => 20220186223
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-06-16
[patent_title] => T-LYMPHOCYTE BINDING APTAMERS
[patent_app_type] => utility
[patent_app_number] => 17/542046
[patent_app_country] => US
[patent_app_date] => 2021-12-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17615
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17542046
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/542046 | T-lymphocyte binding aptamers | Dec 2, 2021 | Issued |
Array
(
[id] => 17657418
[patent_doc_number] => 20220177883
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-06-09
[patent_title] => Antisense Oligonucleotides Targeting ATXN3
[patent_app_type] => utility
[patent_app_number] => 17/540569
[patent_app_country] => US
[patent_app_date] => 2021-12-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 47772
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -30
[patent_words_short_claim] => 43
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17540569
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/540569 | Antisense Oligonucleotides Targeting ATXN3 | Dec 1, 2021 | Abandoned |
Array
(
[id] => 18208462
[patent_doc_number] => 20230054720
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-02-23
[patent_title] => Antisense Oligonucleotides Targeting ATXN3
[patent_app_type] => utility
[patent_app_number] => 17/540495
[patent_app_country] => US
[patent_app_date] => 2021-12-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 44088
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -34
[patent_words_short_claim] => 46
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17540495
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/540495 | Antisense Oligonucleotides Targeting ATXN3 | Dec 1, 2021 | Abandoned |
Array
(
[id] => 17625735
[patent_doc_number] => 20220160750
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-05-26
[patent_title] => SINGLE-NUCLEI CHARACTERIZATION OF AMYOTROPHIC LATERAL SCLEROSIS FRONTAL CORTEX
[patent_app_type] => utility
[patent_app_number] => 17/535070
[patent_app_country] => US
[patent_app_date] => 2021-11-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15866
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 23
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17535070
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/535070 | SINGLE-NUCLEI CHARACTERIZATION OF AMYOTROPHIC LATERAL SCLEROSIS FRONTAL CORTEX | Nov 23, 2021 | Abandoned |
Array
(
[id] => 17505513
[patent_doc_number] => 20220098615
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-03-31
[patent_title] => DUAL FUNCTIONAL EXPRESSION VECTORS AND METHODS OF USE THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/456239
[patent_app_country] => US
[patent_app_date] => 2021-11-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 32187
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 128
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17456239
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/456239 | DUAL FUNCTIONAL EXPRESSION VECTORS AND METHODS OF USE THEREOF | Nov 22, 2021 | Abandoned |
Array
(
[id] => 17749936
[patent_doc_number] => 20220228141
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-07-21
[patent_title] => OLIGONUCLEOTIDES FOR DGAT2 MODULATION
[patent_app_type] => utility
[patent_app_number] => 17/532636
[patent_app_country] => US
[patent_app_date] => 2021-11-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 32766
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -24
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17532636
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/532636 | OLIGONUCLEOTIDES FOR DGAT2 MODULATION | Nov 21, 2021 | Pending |
Array
(
[id] => 17625733
[patent_doc_number] => 20220160748
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-05-26
[patent_title] => CONJUGATES OF S-ANTIGEN TRANSPORT INHIBITING OLIGONUCLEOTIDE POLYMERS HAVING ENHANCED LIVER TARGETING
[patent_app_type] => utility
[patent_app_number] => 17/455528
[patent_app_country] => US
[patent_app_date] => 2021-11-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8644
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -75
[patent_words_short_claim] => 24
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17455528
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/455528 | CONJUGATES OF S-ANTIGEN TRANSPORT INHIBITING OLIGONUCLEOTIDE POLYMERS HAVING ENHANCED LIVER TARGETING | Nov 17, 2021 | Pending |
Array
(
[id] => 17792510
[patent_doc_number] => 20220251601
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-08-11
[patent_title] => mRNA NANOCAPSULE AND USE IN PREPARATION OF ANTIVIRAL DRUGS
[patent_app_type] => utility
[patent_app_number] => 17/528851
[patent_app_country] => US
[patent_app_date] => 2021-11-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3978
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 32
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17528851
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/528851 | mRNA NANOCAPSULE AND USE IN PREPARATION OF ANTIVIRAL DRUGS | Nov 16, 2021 | Pending |
Array
(
[id] => 17627595
[patent_doc_number] => 20220162610
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-05-26
[patent_title] => NOVEL RNA TRANSCRIPT
[patent_app_type] => utility
[patent_app_number] => 17/524586
[patent_app_country] => US
[patent_app_date] => 2021-11-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 55128
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -33
[patent_words_short_claim] => 50
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17524586
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/524586 | NOVEL RNA TRANSCRIPT | Nov 10, 2021 | Pending |
Array
(
[id] => 17670945
[patent_doc_number] => 20220184112
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-06-16
[patent_title] => COMPOSITIONS AND METHODS FOR ENHANCED INTESTINAL ABSORPTION OF CONJUGATED OLIGOMERIC COMPOUNDS
[patent_app_type] => utility
[patent_app_number] => 17/522418
[patent_app_country] => US
[patent_app_date] => 2021-11-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14384
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 34
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17522418
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/522418 | COMPOSITIONS AND METHODS FOR ENHANCED INTESTINAL ABSORPTION OF CONJUGATED OLIGOMERIC COMPOUNDS | Nov 8, 2021 | Abandoned |
Array
(
[id] => 17593647
[patent_doc_number] => 20220143220
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-05-12
[patent_title] => COMPOSITIONS AND METHODS FOR MODULATING MYC TARGET PROTEIN 1
[patent_app_type] => utility
[patent_app_number] => 17/451428
[patent_app_country] => US
[patent_app_date] => 2021-10-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 31158
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 59
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17451428
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/451428 | COMPOSITIONS AND METHODS FOR MODULATING MYC TARGET PROTEIN 1 | Oct 18, 2021 | Pending |
Array
(
[id] => 17482569
[patent_doc_number] => 20220090073
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-03-24
[patent_title] => METHODS AND COMPOSITIONS FOR THE TREATMENT OF NEURODEGENERATIVE DISEASES
[patent_app_type] => utility
[patent_app_number] => 17/484901
[patent_app_country] => US
[patent_app_date] => 2021-09-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9193
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 24
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17484901
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/484901 | METHODS AND COMPOSITIONS FOR THE TREATMENT OF NEURODEGENERATIVE DISEASES | Sep 23, 2021 | Pending |
Array
(
[id] => 17399920
[patent_doc_number] => 20220042010
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-10
[patent_title] => METHODS FOR DETERMINING INCREASED RISK OF CANCER DEVELOPMENT AND TREATING THE SAME
[patent_app_type] => utility
[patent_app_number] => 17/398252
[patent_app_country] => US
[patent_app_date] => 2021-08-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9399
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 82
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17398252
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/398252 | METHODS FOR DETERMINING INCREASED RISK OF CANCER DEVELOPMENT AND TREATING THE SAME | Aug 9, 2021 | Pending |
Array
(
[id] => 17399925
[patent_doc_number] => 20220042015
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-10
[patent_title] => CONJUGATED OLIGONUCLEOTIDES FOR TISSUE SPECIFIC DELIVERY
[patent_app_type] => utility
[patent_app_number] => 17/377632
[patent_app_country] => US
[patent_app_date] => 2021-07-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17820
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17377632
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/377632 | CONJUGATED OLIGONUCLEOTIDES FOR TISSUE SPECIFIC DELIVERY | Jul 15, 2021 | Pending |