Dinh Thanh Le
Examiner (ID: 202, Phone: (571)272-1745 , Office: P/2842 )
Most Active Art Unit | 2816 |
Art Unit(s) | 2816, 2504, 2842, 3621 |
Total Applications | 3204 |
Issued Applications | 2808 |
Pending Applications | 69 |
Abandoned Applications | 327 |
Applications
Application number | Title of the application | Filing Date | Status |
---|---|---|---|
17/577033 | METHOD FOR DETECTING CANCER USING 5-HYDROXYMETHYLCYTOSINE (5-hmC) | Jan 16, 2022 | Abandoned |
Array
(
[id] => 17657516
[patent_doc_number] => 20220177981
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-06-09
[patent_title] => Airborne Pathogen Simulants and Mobility Testing
[patent_app_type] => utility
[patent_app_number] => 17/525823
[patent_app_country] => US
[patent_app_date] => 2021-11-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11246
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 77
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17525823
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/525823 | Airborne Pathogen Simulants and Mobility Testing | Nov 11, 2021 | Pending |
Array
(
[id] => 17428796
[patent_doc_number] => 20220056504
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-24
[patent_title] => STABILIZATION OF NUCLEIC ACIDS IN URINE
[patent_app_type] => utility
[patent_app_number] => 17/521350
[patent_app_country] => US
[patent_app_date] => 2021-11-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4888
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 52
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17521350
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/521350 | STABILIZATION OF NUCLEIC ACIDS IN URINE | Nov 7, 2021 | Pending |
Array
(
[id] => 17642353
[patent_doc_number] => 20220170091
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-06-02
[patent_title] => INTERMITTENT DETECTION DURING ANALYTICAL REACTIONS
[patent_app_type] => utility
[patent_app_number] => 17/520600
[patent_app_country] => US
[patent_app_date] => 2021-11-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 45013
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17520600
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/520600 | INTERMITTENT DETECTION DURING ANALYTICAL REACTIONS | Nov 4, 2021 | Pending |
Array
(
[id] => 17665567
[patent_doc_number] => 11359248
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-06-14
[patent_title] => Methods for detecting single nucleotide variants or indels by deep sequencing
[patent_app_type] => utility
[patent_app_number] => 17/507109
[patent_app_country] => US
[patent_app_date] => 2021-10-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 27
[patent_figures_cnt] => 29
[patent_no_of_words] => 38757
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 213
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17507109
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/507109 | Methods for detecting single nucleotide variants or indels by deep sequencing | Oct 20, 2021 | Issued |
Array
(
[id] => 17414386
[patent_doc_number] => 20220049290
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-17
[patent_title] => SYSTEMS AND METHODS TO ASSESS MICROBIOMES AND TREATMENTS THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/505479
[patent_app_country] => US
[patent_app_date] => 2021-10-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 31257
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -3
[patent_words_short_claim] => 245
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17505479
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/505479 | SYSTEMS AND METHODS TO ASSESS MICROBIOMES AND TREATMENTS THEREOF | Oct 18, 2021 | Pending |
Array
(
[id] => 17386044
[patent_doc_number] => 20220033896
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-03
[patent_title] => APPARATUS, SYSTEM, AND METHOD USING IMMISCIBLE-FLUID-DISCRETE-VOLUMES
[patent_app_type] => utility
[patent_app_number] => 17/505085
[patent_app_country] => US
[patent_app_date] => 2021-10-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 42675
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 127
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17505085
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/505085 | APPARATUS, SYSTEM, AND METHOD USING IMMISCIBLE-FLUID-DISCRETE-VOLUMES | Oct 18, 2021 | Pending |
Array
(
[id] => 17357154
[patent_doc_number] => 20220017950
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-01-20
[patent_title] => OMEGA AMPLIFICATION
[patent_app_type] => utility
[patent_app_number] => 17/494561
[patent_app_country] => US
[patent_app_date] => 2021-10-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 30227
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -86
[patent_words_short_claim] => 62
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17494561
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/494561 | OMEGA AMPLIFICATION | Oct 4, 2021 | Pending |
Array
(
[id] => 17655870
[patent_doc_number] => 20220176335
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-06-09
[patent_title] => METHODS AND COMPOSITIONS FOR TAGGING AND ANALYZING SAMPLES
[patent_app_type] => utility
[patent_app_number] => 17/486771
[patent_app_country] => US
[patent_app_date] => 2021-09-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15614
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17486771
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/486771 | METHODS AND COMPOSITIONS FOR TAGGING AND ANALYZING SAMPLES | Sep 26, 2021 | Pending |
Array
(
[id] => 17314971
[patent_doc_number] => 20210404019
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-12-30
[patent_title] => METHODS FOR ANALYZING A TARGET NUCLEIC ACID FROM RED BLOOD CELLS
[patent_app_type] => utility
[patent_app_number] => 17/475625
[patent_app_country] => US
[patent_app_date] => 2021-09-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11237
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 109
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17475625
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/475625 | METHODS FOR ANALYZING A TARGET NUCLEIC ACID FROM RED BLOOD CELLS | Sep 14, 2021 | Pending |
Array
(
[id] => 17776917
[patent_doc_number] => 20220243266
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-08-04
[patent_title] => METHODS AND DEVICES FOR AMPLIFICATION OF NUCLEIC ACID
[patent_app_type] => utility
[patent_app_number] => 17/471932
[patent_app_country] => US
[patent_app_date] => 2021-09-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12496
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17471932
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/471932 | METHODS AND DEVICES FOR AMPLIFICATION OF NUCLEIC ACID | Sep 9, 2021 | Pending |
Array
(
[id] => 17258927
[patent_doc_number] => 20210371912
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-12-02
[patent_title] => SYSTEMS AND METHODS TO DETECT RARE MUTATIONS AND COPY NUMBER VARIATION
[patent_app_type] => utility
[patent_app_number] => 17/396097
[patent_app_country] => US
[patent_app_date] => 2021-08-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 34410
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 263
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17396097
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/396097 | Systems and methods to detect rare mutations and copy number variation | Aug 5, 2021 | Issued |
Array
(
[id] => 17243832
[patent_doc_number] => 20210363575
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-11-25
[patent_title] => ISOTHERMAL METHODS FOR AMPLIFYING NUCLEIC ACID SAMPLES
[patent_app_type] => utility
[patent_app_number] => 17/392531
[patent_app_country] => US
[patent_app_date] => 2021-08-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 28213
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -24
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17392531
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/392531 | ISOTHERMAL METHODS FOR AMPLIFYING NUCLEIC ACID SAMPLES | Aug 2, 2021 | Pending |
Array
(
[id] => 17214902
[patent_doc_number] => 20210348239
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-11-11
[patent_title] => DETECTING COLORECTAL NEOPLASM
[patent_app_type] => utility
[patent_app_number] => 17/378267
[patent_app_country] => US
[patent_app_date] => 2021-07-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 30312
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => 0
[patent_words_short_claim] => 81
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17378267
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/378267 | DETECTING COLORECTAL NEOPLASM | Jul 15, 2021 | Pending |
Array
(
[id] => 17635251
[patent_doc_number] => 11345968
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-05-31
[patent_title] => Methods for computer processing sequence reads to detect molecular residual disease
[patent_app_type] => utility
[patent_app_number] => 17/367245
[patent_app_country] => US
[patent_app_date] => 2021-07-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 27
[patent_figures_cnt] => 29
[patent_no_of_words] => 38745
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 217
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17367245
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/367245 | Methods for computer processing sequence reads to detect molecular residual disease | Jul 1, 2021 | Issued |
Array
(
[id] => 17400029
[patent_doc_number] => 20220042119
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-10
[patent_title] => DETECTION OF DNA SEQUENCES AS RISK FACTORS FOR HIV INFECTION
[patent_app_type] => utility
[patent_app_number] => 17/347502
[patent_app_country] => US
[patent_app_date] => 2021-06-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5979
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 25
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17347502
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/347502 | DETECTION OF DNA SEQUENCES AS RISK FACTORS FOR HIV INFECTION | Jun 13, 2021 | Pending |
Array
(
[id] => 17110539
[patent_doc_number] => 20210291136
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-09-23
[patent_title] => ASSEMBLY OF HIGH FIDELITY POLYNUCLEOTIDES
[patent_app_type] => utility
[patent_app_number] => 17/341286
[patent_app_country] => US
[patent_app_date] => 2021-06-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 26414
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -52
[patent_words_short_claim] => 119
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17341286
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/341286 | ASSEMBLY OF HIGH FIDELITY POLYNUCLEOTIDES | Jun 6, 2021 | Pending |
Array
(
[id] => 17112211
[patent_doc_number] => 20210292808
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-09-23
[patent_title] => AFFINITY MEDIATED TRANSPORT AMPLIFICATION
[patent_app_type] => utility
[patent_app_number] => 17/338922
[patent_app_country] => US
[patent_app_date] => 2021-06-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4074
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17338922
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/338922 | Affinity mediated transport amplification | Jun 3, 2021 | Issued |
Array
(
[id] => 17112216
[patent_doc_number] => 20210292813
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-09-23
[patent_title] => NUCLEIC ACID COMPLEX PAIR, COMPETITIVE CONSTRUCT, AND PCR KIT USING THE SAME
[patent_app_type] => utility
[patent_app_number] => 17/322737
[patent_app_country] => US
[patent_app_date] => 2021-05-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 82748
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 282
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17322737
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/322737 | NUCLEIC ACID COMPLEX PAIR, COMPETITIVE CONSTRUCT, AND PCR KIT USING THE SAME | May 16, 2021 | Pending |
Array
(
[id] => 17228983
[patent_doc_number] => 20210355539
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-11-18
[patent_title] => BIOMARKERS FROM MINIMALLY INVASIVE SAMPLING REFLECTIVE OF THE PLACENTAL IMMUNE MICROENVIRONMENT
[patent_app_type] => utility
[patent_app_number] => 17/320333
[patent_app_country] => US
[patent_app_date] => 2021-05-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 30610
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 64
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17320333
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/320333 | BIOMARKERS FROM MINIMALLY INVASIVE SAMPLING REFLECTIVE OF THE PLACENTAL IMMUNE MICROENVIRONMENT | May 13, 2021 | Pending |