George C Eckert Ii
Examiner (ID: 117)
Most Active Art Unit | 2815 |
Art Unit(s) | 2815 |
Total Applications | 416 |
Issued Applications | 363 |
Pending Applications | 8 |
Abandoned Applications | 45 |
Applications
Application number | Title of the application | Filing Date | Status |
---|---|---|---|
Array
(
[id] => 18636189
[patent_doc_number] => 11760774
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-09-19
[patent_title] => DNA gridiron compositions and methods
[patent_app_type] => utility
[patent_app_number] => 16/938474
[patent_app_country] => US
[patent_app_date] => 2020-07-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 4059
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 48
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16938474
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/938474 | DNA gridiron compositions and methods | Jul 23, 2020 | Issued |
Array
(
[id] => 16883721
[patent_doc_number] => 20210169916
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-06-10
[patent_title] => METHODS FOR REDUCING C9ORF72 EXPRESSION
[patent_app_type] => utility
[patent_app_number] => 16/937386
[patent_app_country] => US
[patent_app_date] => 2020-07-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14425
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -34
[patent_words_short_claim] => 65
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16937386
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/937386 | METHODS FOR REDUCING C9ORF72 EXPRESSION | Jul 22, 2020 | Abandoned |
Array
(
[id] => 16399135
[patent_doc_number] => 20200339993
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-10-29
[patent_title] => Aptamer Conjugates with N-Heterocyclic Carbene Metal Complexes for Targeted Drug Delivery
[patent_app_type] => utility
[patent_app_number] => 16/925545
[patent_app_country] => US
[patent_app_date] => 2020-07-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11574
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => 0
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16925545
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/925545 | Aptamer conjugates with N-heterocyclic carbene metal complexes for targeted drug delivery | Jul 9, 2020 | Issued |
Array
(
[id] => 16400118
[patent_doc_number] => 20200340976
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-10-29
[patent_title] => USE OF LEUCINE-ZIPPER PROTEIN FOR DIAGNOSIS OR TREATMENT OF FATTY LIVER
[patent_app_type] => utility
[patent_app_number] => 16/923408
[patent_app_country] => US
[patent_app_date] => 2020-07-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8196
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -3
[patent_words_short_claim] => 47
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16923408
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/923408 | Use of leucine-zipper protein for diagnosis or treatment of fatty liver | Jul 7, 2020 | Issued |
Array
(
[id] => 16557499
[patent_doc_number] => 20210002647
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-01-07
[patent_title] => Treatment Of Decreased Bone Mineral Density With Zinc And Ring Finger 3 (ZNRF3) Inhibitors
[patent_app_type] => utility
[patent_app_number] => 16/907678
[patent_app_country] => US
[patent_app_date] => 2020-06-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 29162
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -8
[patent_words_short_claim] => 27
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16907678
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/907678 | Treatment of decreased bone mineral density with zinc and ring finger 3 (ZNRF3) inhibitors | Jun 21, 2020 | Issued |
Array
(
[id] => 16438382
[patent_doc_number] => 20200355708
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-12
[patent_title] => MATERIAL AND METHOD FOR COLORIMETRIC DETECTION OF SMALL-MOLECULE TARGETS
[patent_app_type] => utility
[patent_app_number] => 16/902717
[patent_app_country] => US
[patent_app_date] => 2020-06-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18266
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 88
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16902717
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/902717 | Material and method for colorimetric detection of small-molecule targets | Jun 15, 2020 | Issued |
Array
(
[id] => 16720411
[patent_doc_number] => 20210087558
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-03-25
[patent_title] => COMPOSITIONS AND METHODS FOR INHIBITING EXPRESSION OF THE ALAS1 GENE
[patent_app_type] => utility
[patent_app_number] => 16/893253
[patent_app_country] => US
[patent_app_date] => 2020-06-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 69323
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -32
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16893253
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/893253 | COMPOSITIONS AND METHODS FOR INHIBITING EXPRESSION OF THE ALAS1 GENE | Jun 3, 2020 | Abandoned |
Array
(
[id] => 16925523
[patent_doc_number] => 11046987
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-06-29
[patent_title] => Decreasing lactate level and increasing polypeptide production by downregulating the expression of lactate dehydrogenase and pyruvate dehydrogenase kinase
[patent_app_type] => utility
[patent_app_number] => 16/888344
[patent_app_country] => US
[patent_app_date] => 2020-05-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 19442
[patent_no_of_claims] => 29
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 81
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16888344
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/888344 | Decreasing lactate level and increasing polypeptide production by downregulating the expression of lactate dehydrogenase and pyruvate dehydrogenase kinase | May 28, 2020 | Issued |
Array
(
[id] => 16824603
[patent_doc_number] => 20210139896
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-13
[patent_title] => Peptide Oligonucleotide Conjugates
[patent_app_type] => utility
[patent_app_number] => 16/869213
[patent_app_country] => US
[patent_app_date] => 2020-05-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 35487
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16869213
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/869213 | Peptide oligonucleotide conjugates | May 6, 2020 | Issued |
Array
(
[id] => 16581543
[patent_doc_number] => 20210015945
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-01-21
[patent_title] => ENGINEERED B LYMPHOCYTES AND COMPOSITIONS HAVING MICRO-RNA AND METHODS FOR MAKING AND USING THEM
[patent_app_type] => utility
[patent_app_number] => 16/866055
[patent_app_country] => US
[patent_app_date] => 2020-05-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 39745
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16866055
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/866055 | Engineered B lymphocytes and compositions having micro-RNA and methods for making and using them | May 3, 2020 | Issued |
Array
(
[id] => 16808352
[patent_doc_number] => 20210130905
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-06
[patent_title] => MICRO-RNA BIOMARKERS AND METHODS OF USING SAME
[patent_app_type] => utility
[patent_app_number] => 16/856255
[patent_app_country] => US
[patent_app_date] => 2020-04-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 25583
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16856255
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/856255 | MICRO-RNA BIOMARKERS AND METHODS OF USING SAME | Apr 22, 2020 | Abandoned |
Array
(
[id] => 18747128
[patent_doc_number] => 11806419
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-11-07
[patent_title] => Aptamers for odor control applications
[patent_app_type] => utility
[patent_app_number] => 16/850840
[patent_app_country] => US
[patent_app_date] => 2020-04-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 15
[patent_figures_cnt] => 19
[patent_no_of_words] => 19686
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 66
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16850840
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/850840 | Aptamers for odor control applications | Apr 15, 2020 | Issued |
Array
(
[id] => 18246004
[patent_doc_number] => 11602567
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-03-14
[patent_title] => Methods for modulating RNA splicing
[patent_app_type] => utility
[patent_app_number] => 16/847330
[patent_app_country] => US
[patent_app_date] => 2020-04-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 25
[patent_no_of_words] => 50125
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 230
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16847330
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/847330 | Methods for modulating RNA splicing | Apr 12, 2020 | Issued |
Array
(
[id] => 18779291
[patent_doc_number] => 11820985
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-11-21
[patent_title] => Modified oligonucleotides with increased stability
[patent_app_type] => utility
[patent_app_number] => 16/831470
[patent_app_country] => US
[patent_app_date] => 2020-03-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 80
[patent_figures_cnt] => 91
[patent_no_of_words] => 49407
[patent_no_of_claims] => 44
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 125
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16831470
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/831470 | Modified oligonucleotides with increased stability | Mar 25, 2020 | Issued |
Array
(
[id] => 19027477
[patent_doc_number] => 11926824
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-03-12
[patent_title] => miRNA biogenesis in exosomes for diagnosis and therapy
[patent_app_type] => utility
[patent_app_number] => 16/827343
[patent_app_country] => US
[patent_app_date] => 2020-03-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 80
[patent_figures_cnt] => 113
[patent_no_of_words] => 27056
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 133
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16827343
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/827343 | miRNA biogenesis in exosomes for diagnosis and therapy | Mar 22, 2020 | Issued |
Array
(
[id] => 16824618
[patent_doc_number] => 20210139911
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-13
[patent_title] => ANTISENSE COMPOSITION AND METHOD FOR TREATING MUSCLE ATROPHY
[patent_app_type] => utility
[patent_app_number] => 16/814861
[patent_app_country] => US
[patent_app_date] => 2020-03-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8110
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -1
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16814861
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/814861 | ANTISENSE COMPOSITION AND METHOD FOR TREATING MUSCLE ATROPHY | Mar 9, 2020 | Abandoned |
Array
(
[id] => 16728132
[patent_doc_number] => 20210095279
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-04-01
[patent_title] => METHODS AND COMPOSITIONS FOR THE SPECIFIC INHIBITION OF ANTITHROMBIN 3 (AT3) BY DOUBLE-STRANDED RNA
[patent_app_type] => utility
[patent_app_number] => 16/805315
[patent_app_country] => US
[patent_app_date] => 2020-02-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 78299
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -23
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16805315
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/805315 | Methods and compositions for the specific inhibition of antithrombin 3 (AT3) by double-stranded RNA | Feb 27, 2020 | Issued |
Array
(
[id] => 16238634
[patent_doc_number] => 20200255868
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-08-13
[patent_title] => SWITCHABLE CAS9 NUCLEASES AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/796323
[patent_app_country] => US
[patent_app_date] => 2020-02-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15914
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16796323
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/796323 | Switchable CAS9 nucleases and uses thereof | Feb 19, 2020 | Issued |
Array
(
[id] => 18187759
[patent_doc_number] => 11578331
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-02-14
[patent_title] => Combination comprising immunostimulatory oligonucleotides
[patent_app_type] => utility
[patent_app_number] => 16/793334
[patent_app_country] => US
[patent_app_date] => 2020-02-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 22
[patent_no_of_words] => 8164
[patent_no_of_claims] => 4
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 24
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16793334
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/793334 | Combination comprising immunostimulatory oligonucleotides | Feb 17, 2020 | Issued |
Array
(
[id] => 16204938
[patent_doc_number] => 20200237928
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-07-30
[patent_title] => NANOPARTICLE CONJUGATES AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/792667
[patent_app_country] => US
[patent_app_date] => 2020-02-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19605
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 20
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16792667
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/792667 | Nanoparticle conjugates and uses thereof | Feb 16, 2020 | Issued |