
Gurpreet Kaur
Examiner (ID: 16158, Phone: (571)270-7895 , Office: P/1759 )
| Most Active Art Unit | 1759 |
| Art Unit(s) | 1759, 1795, 1796 |
| Total Applications | 868 |
| Issued Applications | 526 |
| Pending Applications | 90 |
| Abandoned Applications | 288 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 20227976
[patent_doc_number] => 12416625
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-09-16
[patent_title] => Deterministic control of polymer molecule translocation through a nanopore
[patent_app_type] => utility
[patent_app_number] => 19/067493
[patent_app_country] => US
[patent_app_date] => 2025-02-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 14
[patent_figures_cnt] => 27
[patent_no_of_words] => 6129
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 162
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 19067493
[rel_patent_id] =>[rel_patent_doc_number] =>) 19/067493 | Deterministic control of polymer molecule translocation through a nanopore | Feb 27, 2025 | Issued |
Array
(
[id] => 19898717
[patent_doc_number] => 12276633
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2025-04-15
[patent_title] => Wood-derived ionic conductive cellulose-Cu(II) film, the preparation method thereof and wood-derived ionic conductive cellulose-Cu(II) sensor
[patent_app_type] => utility
[patent_app_number] => 18/919495
[patent_app_country] => US
[patent_app_date] => 2024-10-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 31
[patent_figures_cnt] => 31
[patent_no_of_words] => 5811
[patent_no_of_claims] => 7
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 73
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18919495
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/919495 | Wood-derived ionic conductive cellulose-Cu(II) film, the preparation method thereof and wood-derived ionic conductive cellulose-Cu(II) sensor | Oct 17, 2024 | Issued |
Array
(
[id] => 19529465
[patent_doc_number] => 20240353367
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-10-24
[patent_title] => LEAD-FREE GALVANIC OXYGEN SENSOR
[patent_app_type] => utility
[patent_app_number] => 18/762441
[patent_app_country] => US
[patent_app_date] => 2024-07-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 1206
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 126
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18762441
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/762441 | LEAD-FREE GALVANIC OXYGEN SENSOR | Jul 1, 2024 | Abandoned |
Array
(
[id] => 19917040
[patent_doc_number] => 12292403
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-05-06
[patent_title] => Devices, systems, and methods for performing optical and electrochemical assays
[patent_app_type] => utility
[patent_app_number] => 18/747165
[patent_app_country] => US
[patent_app_date] => 2024-06-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 27
[patent_figures_cnt] => 36
[patent_no_of_words] => 17292
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 376
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18747165
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/747165 | Devices, systems, and methods for performing optical and electrochemical assays | Jun 17, 2024 | Issued |
Array
(
[id] => 19799401
[patent_doc_number] => 20250065326
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2025-02-27
[patent_title] => DIRECTING MOTION OF DROPLETS USING DIFFERENTIAL WETTING
[patent_app_type] => utility
[patent_app_number] => 18/624968
[patent_app_country] => US
[patent_app_date] => 2024-04-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12359
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 72
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18624968
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/624968 | DIRECTING MOTION OF DROPLETS USING DIFFERENTIAL WETTING | Apr 1, 2024 | Pending |
Array
(
[id] => 19833467
[patent_doc_number] => 20250085253
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2025-03-13
[patent_title] => MICRO-FLUIDIC DETECTION DEVICE
[patent_app_type] => utility
[patent_app_number] => 18/613167
[patent_app_country] => US
[patent_app_date] => 2024-03-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15228
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 374
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18613167
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/613167 | MICRO-FLUIDIC DETECTION DEVICE | Mar 21, 2024 | Pending |
Array
(
[id] => 19833467
[patent_doc_number] => 20250085253
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2025-03-13
[patent_title] => MICRO-FLUIDIC DETECTION DEVICE
[patent_app_type] => utility
[patent_app_number] => 18/613167
[patent_app_country] => US
[patent_app_date] => 2024-03-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15228
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 374
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18613167
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/613167 | MICRO-FLUIDIC DETECTION DEVICE | Mar 21, 2024 | Pending |
Array
(
[id] => 19891313
[patent_doc_number] => 20250116625
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2025-04-10
[patent_title] => ANALYTE SENSORS AND METHODS FOR IMPROVING INTERFERENT REJECTION AND LONGEVITY
[patent_app_type] => utility
[patent_app_number] => 18/605190
[patent_app_country] => US
[patent_app_date] => 2024-03-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11729
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 102
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18605190
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/605190 | ANALYTE SENSORS AND METHODS FOR IMPROVING INTERFERENT REJECTION AND LONGEVITY | Mar 13, 2024 | Pending |
Array
(
[id] => 19891313
[patent_doc_number] => 20250116625
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2025-04-10
[patent_title] => ANALYTE SENSORS AND METHODS FOR IMPROVING INTERFERENT REJECTION AND LONGEVITY
[patent_app_type] => utility
[patent_app_number] => 18/605190
[patent_app_country] => US
[patent_app_date] => 2024-03-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11729
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 102
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18605190
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/605190 | ANALYTE SENSORS AND METHODS FOR IMPROVING INTERFERENT REJECTION AND LONGEVITY | Mar 13, 2024 | Pending |
Array
(
[id] => 19450186
[patent_doc_number] => 20240310316
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-09-19
[patent_title] => Radio Frequency bio sensor and manufacturing method thereof
[patent_app_type] => utility
[patent_app_number] => 18/605104
[patent_app_country] => US
[patent_app_date] => 2024-03-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4809
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 62
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18605104
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/605104 | Radio Frequency bio sensor and manufacturing method thereof | Mar 13, 2024 | Pending |
Array
(
[id] => 19282893
[patent_doc_number] => 20240219369
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-07-04
[patent_title] => MULTI-CHIP PACKAGING OF INTEGRATED CIRCUITS AND FLOW CELLS FOR NANOPORE SEQUENCING
[patent_app_type] => utility
[patent_app_number] => 18/603061
[patent_app_country] => US
[patent_app_date] => 2024-03-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9107
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -5
[patent_words_short_claim] => 110
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18603061
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/603061 | MULTI-CHIP PACKAGING OF INTEGRATED CIRCUITS AND FLOW CELLS FOR NANOPORE SEQUENCING | Mar 11, 2024 | Pending |
Array
(
[id] => 19282893
[patent_doc_number] => 20240219369
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-07-04
[patent_title] => MULTI-CHIP PACKAGING OF INTEGRATED CIRCUITS AND FLOW CELLS FOR NANOPORE SEQUENCING
[patent_app_type] => utility
[patent_app_number] => 18/603061
[patent_app_country] => US
[patent_app_date] => 2024-03-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9107
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -5
[patent_words_short_claim] => 110
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18603061
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/603061 | MULTI-CHIP PACKAGING OF INTEGRATED CIRCUITS AND FLOW CELLS FOR NANOPORE SEQUENCING | Mar 11, 2024 | Pending |
Array
(
[id] => 19332867
[patent_doc_number] => 20240247297
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-07-25
[patent_title] => NAD(P)- DEPENDENT RESPONSIVE ENZYMES, ELECTRODES AND SENSORS, AND METHODS FOR MAKING AND USING THE SAME
[patent_app_type] => utility
[patent_app_number] => 18/597704
[patent_app_country] => US
[patent_app_date] => 2024-03-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7250
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -25
[patent_words_short_claim] => 81
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18597704
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/597704 | NAD(P)- DEPENDENT RESPONSIVE ENZYMES, ELECTRODES AND SENSORS, AND METHODS FOR MAKING AND USING THE SAME | Mar 5, 2024 | Pending |
Array
(
[id] => 19250141
[patent_doc_number] => 20240201129
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-06-20
[patent_title] => ELECTROCHEMICAL SENSOR MEASUREMENT UNIT
[patent_app_type] => utility
[patent_app_number] => 18/544987
[patent_app_country] => US
[patent_app_date] => 2023-12-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6673
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18544987
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/544987 | ELECTROCHEMICAL SENSOR MEASUREMENT UNIT | Dec 18, 2023 | Pending |
Array
(
[id] => 19250141
[patent_doc_number] => 20240201129
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-06-20
[patent_title] => ELECTROCHEMICAL SENSOR MEASUREMENT UNIT
[patent_app_type] => utility
[patent_app_number] => 18/544987
[patent_app_country] => US
[patent_app_date] => 2023-12-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6673
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18544987
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/544987 | ELECTROCHEMICAL SENSOR MEASUREMENT UNIT | Dec 18, 2023 | Pending |
Array
(
[id] => 20051257
[patent_doc_number] => 20250189479
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2025-06-12
[patent_title] => STABILIZING OXYGEN IN A COMPOSITION
[patent_app_type] => utility
[patent_app_number] => 18/535453
[patent_app_country] => US
[patent_app_date] => 2023-12-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 1528
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 30
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18535453
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/535453 | STABILIZING OXYGEN IN A COMPOSITION | Dec 10, 2023 | Pending |
Array
(
[id] => 19203944
[patent_doc_number] => 20240175843
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-05-30
[patent_title] => GAS SENSOR
[patent_app_type] => utility
[patent_app_number] => 18/516234
[patent_app_country] => US
[patent_app_date] => 2023-11-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4015
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -3
[patent_words_short_claim] => 189
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18516234
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/516234 | GAS SENSOR | Nov 20, 2023 | Pending |
Array
(
[id] => 19203944
[patent_doc_number] => 20240175843
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-05-30
[patent_title] => GAS SENSOR
[patent_app_type] => utility
[patent_app_number] => 18/516234
[patent_app_country] => US
[patent_app_date] => 2023-11-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4015
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -3
[patent_words_short_claim] => 189
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18516234
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/516234 | GAS SENSOR | Nov 20, 2023 | Pending |
Array
(
[id] => 20007931
[patent_doc_number] => 20250146153
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2025-05-08
[patent_title] => SHARED ELECTROLYZER MONITORING SYSTEMS AND METHODS
[patent_app_type] => utility
[patent_app_number] => 18/387380
[patent_app_country] => US
[patent_app_date] => 2023-11-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 0
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 111
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18387380
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/387380 | SHARED ELECTROLYZER MONITORING SYSTEMS AND METHODS | Nov 5, 2023 | Pending |
Array
(
[id] => 20007931
[patent_doc_number] => 20250146153
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2025-05-08
[patent_title] => SHARED ELECTROLYZER MONITORING SYSTEMS AND METHODS
[patent_app_type] => utility
[patent_app_number] => 18/387380
[patent_app_country] => US
[patent_app_date] => 2023-11-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 0
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 111
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18387380
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/387380 | SHARED ELECTROLYZER MONITORING SYSTEMS AND METHODS | Nov 5, 2023 | Pending |