Hadi Shakeri
Examiner (ID: 13161, Phone: (571)272-4495 , Office: P/3727 )
Most Active Art Unit | 3723 |
Art Unit(s) | 3627, 3723, 3727 |
Total Applications | 2885 |
Issued Applications | 1770 |
Pending Applications | 162 |
Abandoned Applications | 952 |
Applications
Application number | Title of the application | Filing Date | Status |
---|---|---|---|
Array
(
[id] => 16793249
[patent_doc_number] => 20210123066
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-04-29
[patent_title] => METHODS OF REGENERATION AND TRANSFORMATION OF STEVIA PLANT AND TRANSGENIC STEVIA PLANTS HAVING ENHANCED STEVIOL GLYCOSIDES CONTENT
[patent_app_type] => utility
[patent_app_number] => 16/963133
[patent_app_country] => US
[patent_app_date] => 2019-01-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 21910
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 95
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16963133
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/963133 | METHODS OF REGENERATION AND TRANSFORMATION OF STEVIA PLANT AND TRANSGENIC STEVIA PLANTS HAVING ENHANCED STEVIOL GLYCOSIDES CONTENT | Jan 16, 2019 | Abandoned |
Array
(
[id] => 14231157
[patent_doc_number] => 20190127751
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-05-02
[patent_title] => ISOLATED POLYNUCLEOTIDES AND POLYPEPTIDES AND METHODS OF USING SAME FOR INCREASING PLANT YIELD, BIOMASS, GROWTH RATE, VIGOR, OIL CONTENT, ABIOTIC STRESS TOLERANCE OF PLANTS AND NITROGEN USE EFFICIENCY
[patent_app_type] => utility
[patent_app_number] => 16/244197
[patent_app_country] => US
[patent_app_date] => 2019-01-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 102403
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 112
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16244197
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/244197 | Isolated polynucleotides and polypeptides and methods of using same for increasing plant yield, biomass, growth rate, vigor, oil content, abiotic stress tolerance of plants and nitrogen use efficiency | Jan 9, 2019 | Issued |
Array
(
[id] => 17713678
[patent_doc_number] => 11377662
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-07-05
[patent_title] => Agrobacterium-mediated and particle bombardment transformation method for cowpea and dry bean meristem explants
[patent_app_type] => utility
[patent_app_number] => 16/243959
[patent_app_country] => US
[patent_app_date] => 2019-01-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 35
[patent_figures_cnt] => 39
[patent_no_of_words] => 11228
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 91
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16243959
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/243959 | Agrobacterium-mediated and particle bombardment transformation method for cowpea and dry bean meristem explants | Jan 8, 2019 | Issued |
Array
(
[id] => 16712262
[patent_doc_number] => 20210079409
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-03-18
[patent_title] => REGENERATION OF GENETICALLY MODIFIED PLANTS
[patent_app_type] => utility
[patent_app_number] => 16/959555
[patent_app_country] => US
[patent_app_date] => 2018-12-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18051
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 134
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16959555
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/959555 | REGENERATION OF GENETICALLY MODIFIED PLANTS | Dec 30, 2018 | Pending |
Array
(
[id] => 17267717
[patent_doc_number] => 11193132
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-12-07
[patent_title] => Genetic modulation of photosynthetic organisms for improved growth
[patent_app_type] => utility
[patent_app_number] => 16/234209
[patent_app_country] => US
[patent_app_date] => 2018-12-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 17
[patent_no_of_words] => 31179
[patent_no_of_claims] => 25
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 31
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16234209
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/234209 | Genetic modulation of photosynthetic organisms for improved growth | Dec 26, 2018 | Issued |
Array
(
[id] => 16775663
[patent_doc_number] => 20210112740
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-04-22
[patent_title] => REGENERATION OF PLANTS IN THE PRESENCE OF HISTONE DEACETYLASE INHIBITORS
[patent_app_type] => utility
[patent_app_number] => 16/955899
[patent_app_country] => US
[patent_app_date] => 2018-12-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8040
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 33
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16955899
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/955899 | Regeneration of plants in the presence of histone deacetylase inhibitors | Dec 20, 2018 | Issued |
Array
(
[id] => 16657753
[patent_doc_number] => 20210054389
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-02-25
[patent_title] => TRANSFORMATION OF DICOT PLANTS
[patent_app_type] => utility
[patent_app_number] => 16/957869
[patent_app_country] => US
[patent_app_date] => 2018-12-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24972
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -23
[patent_words_short_claim] => 38
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16957869
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/957869 | TRANSFORMATION OF DICOT PLANTS | Dec 18, 2018 | Abandoned |
Array
(
[id] => 16531499
[patent_doc_number] => 10874071
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-12-29
[patent_title] => Machine harvestable iceberg lettuce
[patent_app_type] => utility
[patent_app_number] => 16/224771
[patent_app_country] => US
[patent_app_date] => 2018-12-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 80
[patent_figures_cnt] => 156
[patent_no_of_words] => 52412
[patent_no_of_claims] => 9
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 130
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16224771
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/224771 | Machine harvestable iceberg lettuce | Dec 17, 2018 | Issued |
Array
(
[id] => 14502045
[patent_doc_number] => 20190194677
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-06-27
[patent_title] => TRANSGENIC PLANTS AND A TRANSIENT TRANSFORMATION SYSTEM FOR GENOME-WIDE TRANSCRIPTION FACTOR TARGET DISCOVERY
[patent_app_type] => utility
[patent_app_number] => 16/211900
[patent_app_country] => US
[patent_app_date] => 2018-12-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 87502
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -6
[patent_words_short_claim] => 47
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16211900
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/211900 | TRANSGENIC PLANTS AND A TRANSIENT TRANSFORMATION SYSTEM FOR GENOME-WIDE TRANSCRIPTION FACTOR TARGET DISCOVERY | Dec 5, 2018 | Abandoned |
Array
(
[id] => 17045159
[patent_doc_number] => 11098328
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-08-24
[patent_title] => Algal lipid productivity via genetic modification of a signaling protein
[patent_app_type] => utility
[patent_app_number] => 16/209655
[patent_app_country] => US
[patent_app_date] => 2018-12-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 6
[patent_no_of_words] => 29264
[patent_no_of_claims] => 27
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 75
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16209655
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/209655 | Algal lipid productivity via genetic modification of a signaling protein | Dec 3, 2018 | Issued |
Array
(
[id] => 19151385
[patent_doc_number] => 11976285
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-05-07
[patent_title] => Maize gene
[patent_app_type] => utility
[patent_app_number] => 16/767207
[patent_app_country] => US
[patent_app_date] => 2018-11-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 10449
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 40
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16767207
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/767207 | Maize gene | Nov 27, 2018 | Issued |
Array
(
[id] => 17571294
[patent_doc_number] => 11319553
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-05-03
[patent_title] => Compositions and methods conferring resistance to fungal diseases
[patent_app_type] => utility
[patent_app_number] => 16/767827
[patent_app_country] => US
[patent_app_date] => 2018-11-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 13
[patent_no_of_words] => 38990
[patent_no_of_claims] => 6
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 95
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16767827
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/767827 | Compositions and methods conferring resistance to fungal diseases | Nov 26, 2018 | Issued |
Array
(
[id] => 16468526
[patent_doc_number] => 20200370063
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-26
[patent_title] => GENETICALLY ENGINEERED LAND PLANTS THAT EXPRESS LCID/E PROTEIN AND OPTIONALLY A CCP1 MITOCHONDRIAL TRANSPORTER PROTEIN AND/OR PYRUVATE CARBOXYLASE
[patent_app_type] => utility
[patent_app_number] => 16/766789
[patent_app_country] => US
[patent_app_date] => 2018-11-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24264
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16766789
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/766789 | GENETICALLY ENGINEERED LAND PLANTS THAT EXPRESS LCID/E PROTEIN AND OPTIONALLY A CCP1 MITOCHONDRIAL TRANSPORTER PROTEIN AND/OR PYRUVATE CARBOXYLASE | Nov 25, 2018 | Abandoned |
Array
(
[id] => 16506491
[patent_doc_number] => 20200385747
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-12-10
[patent_title] => GENOME-EDITED PLANT PRODUCTION METHOD
[patent_app_type] => utility
[patent_app_number] => 16/767355
[patent_app_country] => US
[patent_app_date] => 2018-11-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11136
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 55
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16767355
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/767355 | Genome-edited plant production method | Nov 20, 2018 | Issued |
Array
(
[id] => 15541271
[patent_doc_number] => 10570402
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-02-25
[patent_title] => None
[patent_app_type] => utility
[patent_app_number] => 16/190386
[patent_app_country] => US
[patent_app_date] => 2018-11-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 13
[patent_no_of_words] => 12457
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 154
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16190386
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/190386 | None | Nov 13, 2018 | Issued |
Array
(
[id] => 18216682
[patent_doc_number] => 11591605
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-02-28
[patent_title] => Plant genome editing method
[patent_app_type] => utility
[patent_app_number] => 16/189225
[patent_app_country] => US
[patent_app_date] => 2018-11-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 18
[patent_no_of_words] => 18249
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 199
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16189225
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/189225 | Plant genome editing method | Nov 12, 2018 | Issued |
Array
(
[id] => 14277943
[patent_doc_number] => 20190136256
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-05-09
[patent_title] => METHODS OF CONTROLLING VEGETATIVE GROWTH AND FLOWERING TIMES BY MODULATING PHOSPHOENOLPYRUVATE SHUNT BETWEEN SHIKIMATE AND GLYCOLYSIS PATHWAYS
[patent_app_type] => utility
[patent_app_number] => 16/183074
[patent_app_country] => US
[patent_app_date] => 2018-11-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16487
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 12
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16183074
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/183074 | METHODS OF CONTROLLING VEGETATIVE GROWTH AND FLOWERING TIMES BY MODULATING PHOSPHOENOLPYRUVATE SHUNT BETWEEN SHIKIMATE AND GLYCOLYSIS PATHWAYS | Nov 6, 2018 | Abandoned |
Array
(
[id] => 16855207
[patent_doc_number] => 20210155952
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-27
[patent_title] => METHODS AND COMPOSITIONS FOR PLANT PATHOGEN RESISTANCE IN PLANTS
[patent_app_type] => utility
[patent_app_number] => 16/761409
[patent_app_country] => US
[patent_app_date] => 2018-11-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24887
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -20
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16761409
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/761409 | Methods and compositions for plant pathogen resistance in plants | Nov 4, 2018 | Issued |
Array
(
[id] => 14019383
[patent_doc_number] => 20190071685
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-03-07
[patent_title] => IDENTIFICATION OF CROP MYB TRANSCRIPTION FACTORS AND THEIR USE
[patent_app_type] => utility
[patent_app_number] => 16/176936
[patent_app_country] => US
[patent_app_date] => 2018-10-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9156
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -6
[patent_words_short_claim] => 24
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16176936
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/176936 | IDENTIFICATION OF CROP MYB TRANSCRIPTION FACTORS AND THEIR USE | Oct 30, 2018 | Abandoned |
Array
(
[id] => 16259293
[patent_doc_number] => 10750699
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-08-25
[patent_title] => Lettuce variety Annita
[patent_app_type] => utility
[patent_app_number] => 16/170077
[patent_app_country] => US
[patent_app_date] => 2018-10-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12665
[patent_no_of_claims] => 29
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 20
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16170077
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/170077 | Lettuce variety Annita | Oct 24, 2018 | Issued |