
Hannah J. Pak
Examiner (ID: 7389, Phone: (571)270-5456 , Office: P/1764 )
| Most Active Art Unit | 1764 |
| Art Unit(s) | 1796, 1764 |
| Total Applications | 1287 |
| Issued Applications | 948 |
| Pending Applications | 88 |
| Abandoned Applications | 275 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 14783235
[patent_doc_number] => 20190266515
[patent_country] => US
[patent_kind] => A9
[patent_issue_date] => 2019-08-29
[patent_title] => System with Hybrid Communication Strategy for Large-Scale Distributed Deep Learning
[patent_app_type] => utility
[patent_app_number] => 15/814394
[patent_app_country] => US
[patent_app_date] => 2017-11-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4918
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 109
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15814394
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/814394 | System with hybrid communication strategy for large-scale distributed deep learning | Nov 15, 2017 | Issued |
Array
(
[id] => 13483943
[patent_doc_number] => 20180293514
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-10-11
[patent_title] => NEW RULE CREATION USING MDP AND INVERSE REINFORCEMENT LEARNING
[patent_app_type] => utility
[patent_app_number] => 15/812002
[patent_app_country] => US
[patent_app_date] => 2017-11-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6506
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 159
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15812002
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/812002 | Rule creation using MDP and inverse reinforcement learning | Nov 13, 2017 | Issued |
Array
(
[id] => 15284711
[patent_doc_number] => 10515020
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-12-24
[patent_title] => Marking storage keys to indicate memory used to back address translation structures
[patent_app_type] => utility
[patent_app_number] => 15/801359
[patent_app_country] => US
[patent_app_date] => 2017-11-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 15
[patent_figures_cnt] => 19
[patent_no_of_words] => 15020
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 111
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15801359
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/801359 | Marking storage keys to indicate memory used to back address translation structures | Nov 1, 2017 | Issued |
Array
(
[id] => 14982673
[patent_doc_number] => 10445248
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-10-15
[patent_title] => Host page management using active guest page table indicators
[patent_app_type] => utility
[patent_app_number] => 15/801360
[patent_app_country] => US
[patent_app_date] => 2017-11-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 26
[patent_figures_cnt] => 37
[patent_no_of_words] => 23164
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 123
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15801360
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/801360 | Host page management using active guest page table indicators | Nov 1, 2017 | Issued |
Array
(
[id] => 12869086
[patent_doc_number] => 20180181537
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-06-28
[patent_title] => MULTITEMPORAL DATA ANALYSIS
[patent_app_type] => utility
[patent_app_number] => 15/790206
[patent_app_country] => US
[patent_app_date] => 2017-10-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6933
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 146
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15790206
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/790206 | Multitemporal data analysis | Oct 22, 2017 | Issued |
Array
(
[id] => 17195317
[patent_doc_number] => 11164076
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-11-02
[patent_title] => Intelligent regularization of neural network architectures
[patent_app_type] => utility
[patent_app_number] => 15/789898
[patent_app_country] => US
[patent_app_date] => 2017-10-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 11729
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 119
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15789898
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/789898 | Intelligent regularization of neural network architectures | Oct 19, 2017 | Issued |
Array
(
[id] => 12689857
[patent_doc_number] => 20180121785
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-05-03
[patent_title] => CONTEXT-AWARE ATTENTION-BASED NEURAL NETWORK FOR INTERACTIVE QUESTION ANSWERING
[patent_app_type] => utility
[patent_app_number] => 15/789614
[patent_app_country] => US
[patent_app_date] => 2017-10-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5939
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 118
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15789614
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/789614 | Context-aware attention-based neural network for interactive question answering | Oct 19, 2017 | Issued |
Array
(
[id] => 16819160
[patent_doc_number] => 11003995
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-05-11
[patent_title] => Semi-supervised regression with generative adversarial networks
[patent_app_type] => utility
[patent_app_number] => 15/789518
[patent_app_country] => US
[patent_app_date] => 2017-10-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 9
[patent_no_of_words] => 7076
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 87
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15789518
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/789518 | Semi-supervised regression with generative adversarial networks | Oct 19, 2017 | Issued |
Array
(
[id] => 17062369
[patent_doc_number] => 11106975
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-08-31
[patent_title] => Fast neural network implementations by increasing parallelism of cell computations
[patent_app_type] => utility
[patent_app_number] => 15/789241
[patent_app_country] => US
[patent_app_date] => 2017-10-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 15
[patent_no_of_words] => 12060
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 295
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15789241
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/789241 | Fast neural network implementations by increasing parallelism of cell computations | Oct 19, 2017 | Issued |
Array
(
[id] => 14219471
[patent_doc_number] => 20190122120
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-04-25
[patent_title] => SELF-TRAINING METHOD AND SYSTEM FOR SEMI-SUPERVISED LEARNING WITH GENERATIVE ADVERSARIAL NETWORKS
[patent_app_type] => utility
[patent_app_number] => 15/789628
[patent_app_country] => US
[patent_app_date] => 2017-10-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6447
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 126
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15789628
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/789628 | Self-training method and system for semi-supervised learning with generative adversarial networks | Oct 19, 2017 | Issued |
Array
(
[id] => 14218901
[patent_doc_number] => 20190121835
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-04-25
[patent_title] => LIMITED DURATION SUPPLY FOR HEURISTIC ALGORITHMS
[patent_app_type] => utility
[patent_app_number] => 15/789557
[patent_app_country] => US
[patent_app_date] => 2017-10-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4568
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 91
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15789557
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/789557 | Limited duration supply for heuristic algorithms | Oct 19, 2017 | Issued |
Array
(
[id] => 12180636
[patent_doc_number] => 20180039572
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-02-08
[patent_title] => 'METHODS AND APPARATUSES FOR REQUESTING READY STATUS INFORMATION FROM A MEMORY'
[patent_app_type] => utility
[patent_app_number] => 15/786408
[patent_app_country] => US
[patent_app_date] => 2017-10-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 6689
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15786408
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/786408 | Methods and apparatuses for requesting ready status information from a memory | Oct 16, 2017 | Issued |
Array
(
[id] => 12798421
[patent_doc_number] => 20180157976
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-06-07
[patent_title] => DEVICE AND METHOD FOR DETERMINING CONVOLUTIONAL NEURAL NETWORK MODEL
[patent_app_type] => utility
[patent_app_number] => 15/723457
[patent_app_country] => US
[patent_app_date] => 2017-10-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10232
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 80
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15723457
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/723457 | Device and method for determining convolutional neural network model | Oct 2, 2017 | Issued |
Array
(
[id] => 12613254
[patent_doc_number] => 20180096248
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-04-05
[patent_title] => METHODS FOR SECURE LEARNING OF PARAMETERS OF A CONVOLUTION NEURAL NETWORK, AND FOR SECURE INPUT DATA CLASSIFICATION
[patent_app_type] => utility
[patent_app_number] => 15/722490
[patent_app_country] => US
[patent_app_date] => 2017-10-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4426
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15722490
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/722490 | Methods for secure learning of parameters of a convolution neural network, and for secure input data classification | Oct 1, 2017 | Issued |
Array
(
[id] => 16819155
[patent_doc_number] => 11003990
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-05-11
[patent_title] => Controlling memory area for training a neural network
[patent_app_type] => utility
[patent_app_number] => 15/722270
[patent_app_country] => US
[patent_app_date] => 2017-10-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 18
[patent_figures_cnt] => 20
[patent_no_of_words] => 17315
[patent_no_of_claims] => 5
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 262
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15722270
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/722270 | Controlling memory area for training a neural network | Oct 1, 2017 | Issued |
Array
(
[id] => 12531807
[patent_doc_number] => 10007456
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2018-06-26
[patent_title] => Efficient scrubbing of mirrored memory
[patent_app_type] => utility
[patent_app_number] => 15/718703
[patent_app_country] => US
[patent_app_date] => 2017-09-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 6427
[patent_no_of_claims] => 1
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 386
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15718703
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/718703 | Efficient scrubbing of mirrored memory | Sep 27, 2017 | Issued |
Array
(
[id] => 16864849
[patent_doc_number] => 11023593
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-06-01
[patent_title] => Protecting cognitive systems from model stealing attacks
[patent_app_type] => utility
[patent_app_number] => 15/714514
[patent_app_country] => US
[patent_app_date] => 2017-09-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 8
[patent_no_of_words] => 17129
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 212
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15714514
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/714514 | Protecting cognitive systems from model stealing attacks | Sep 24, 2017 | Issued |
Array
(
[id] => 16987327
[patent_doc_number] => 11074503
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-07-27
[patent_title] => Execution of a genetic algorithm having variable epoch size with selective execution of a training algorithm
[patent_app_type] => utility
[patent_app_number] => 15/697158
[patent_app_country] => US
[patent_app_date] => 2017-09-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 11
[patent_no_of_words] => 20188
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 149
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15697158
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/697158 | Execution of a genetic algorithm having variable epoch size with selective execution of a training algorithm | Sep 5, 2017 | Issued |
Array
(
[id] => 16667703
[patent_doc_number] => 10936952
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-03-02
[patent_title] => Detecting content items in violation of an online system policy using templates based on semantic vectors representing content items
[patent_app_type] => utility
[patent_app_number] => 15/694339
[patent_app_country] => US
[patent_app_date] => 2017-09-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 11
[patent_no_of_words] => 13687
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 169
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15694339
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/694339 | Detecting content items in violation of an online system policy using templates based on semantic vectors representing content items | Aug 31, 2017 | Issued |
Array
(
[id] => 14023193
[patent_doc_number] => 20190073590
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-03-07
[patent_title] => Sparse Neural Network Training Optimization
[patent_app_type] => utility
[patent_app_number] => 15/694742
[patent_app_country] => US
[patent_app_date] => 2017-09-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 27085
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 58
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15694742
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/694742 | Sparse neural network training optimization | Aug 31, 2017 | Issued |