
Harris C. Wang
Examiner (ID: 9046, Phone: (571)270-1462 , Office: P/2439 )
| Most Active Art Unit | 2439 |
| Art Unit(s) | 2139, 2439 |
| Total Applications | 625 |
| Issued Applications | 416 |
| Pending Applications | 50 |
| Abandoned Applications | 179 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 17307334
[patent_doc_number] => 11208426
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-12-28
[patent_title] => Lactobionic acid production methods and products
[patent_app_type] => utility
[patent_app_number] => 16/259810
[patent_app_country] => US
[patent_app_date] => 2019-01-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 11890
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 79
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16259810
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/259810 | Lactobionic acid production methods and products | Jan 27, 2019 | Issued |
Array
(
[id] => 14468513
[patent_doc_number] => 20190185899
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-06-20
[patent_title] => Method for Producing 9alpha-Hydroxy Androstane-4-Alkene-3,17-Diketone by Enzymatic Conversion
[patent_app_type] => utility
[patent_app_number] => 16/256001
[patent_app_country] => US
[patent_app_date] => 2019-01-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3312
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 29
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16256001
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/256001 | Method for producing 9alpha-hydroxy androstane-4-alkene-3,17-diketone by enzymatic conversion | Jan 23, 2019 | Issued |
Array
(
[id] => 14569465
[patent_doc_number] => 20190212339
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-07-11
[patent_title] => ASSAYS FOR IMPROVING AUTOMATED ANTIMICROBIAL SUSCEPTIBILITY TESTING ACCURACY
[patent_app_type] => utility
[patent_app_number] => 16/245092
[patent_app_country] => US
[patent_app_date] => 2019-01-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10524
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16245092
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/245092 | Assays for improving automated antimicrobial susceptibility testing accuracy | Jan 9, 2019 | Issued |
Array
(
[id] => 16557544
[patent_doc_number] => 20210002692
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-01-07
[patent_title] => TARGET SUBSTANCE DETECTION METHOD, TARGET SUBSTANCE DETECTION KIT, AND TARGET SUBSTANCE DETECTION DEVICE
[patent_app_type] => utility
[patent_app_number] => 16/982557
[patent_app_country] => US
[patent_app_date] => 2019-01-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6869
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 54
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16982557
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/982557 | TARGET SUBSTANCE DETECTION METHOD, TARGET SUBSTANCE DETECTION KIT, AND TARGET SUBSTANCE DETECTION DEVICE | Jan 7, 2019 | Abandoned |
Array
(
[id] => 14214485
[patent_doc_number] => 20190119627
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-04-25
[patent_title] => BIOMIMETIC SUPPORT FOR THREE-DIMENSIONAL CELL CULTURING, METHOD FOR MANUFACTURING SAME, AND USE THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/238537
[patent_app_country] => US
[patent_app_date] => 2019-01-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24557
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -7
[patent_words_short_claim] => 87
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16238537
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/238537 | Biomimetic support for three-dimensional cell culturing, method for manufacturing same, and use thereof | Jan 2, 2019 | Issued |
Array
(
[id] => 18559949
[patent_doc_number] => 11725185
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-08-15
[patent_title] => Stem cell culture systems for columnar epithelial stem cells, and uses related thereto
[patent_app_type] => utility
[patent_app_number] => 16/958074
[patent_app_country] => US
[patent_app_date] => 2018-12-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 19
[patent_no_of_words] => 37578
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 70
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16958074
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/958074 | Stem cell culture systems for columnar epithelial stem cells, and uses related thereto | Dec 27, 2018 | Issued |
Array
(
[id] => 16362463
[patent_doc_number] => 20200319214
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-10-08
[patent_title] => HYBRID ENZYMATIC APTAMER SENSORS
[patent_app_type] => utility
[patent_app_number] => 16/956879
[patent_app_country] => US
[patent_app_date] => 2018-12-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3656
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 31
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16956879
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/956879 | Hybrid enzymatic aptamer sensors | Dec 20, 2018 | Issued |
Array
(
[id] => 17665498
[patent_doc_number] => 11359179
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-06-14
[patent_title] => Expansion and engraftment of stem cells using Notch 1 and/or Notch 2 agonists
[patent_app_type] => utility
[patent_app_number] => 16/228069
[patent_app_country] => US
[patent_app_date] => 2018-12-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 42
[patent_figures_cnt] => 42
[patent_no_of_words] => 35610
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 57
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16228069
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/228069 | Expansion and engraftment of stem cells using Notch 1 and/or Notch 2 agonists | Dec 19, 2018 | Issued |
Array
(
[id] => 16861788
[patent_doc_number] => 11020510
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-06-01
[patent_title] => Muscle cell patches and uses therefor
[patent_app_type] => utility
[patent_app_number] => 16/228017
[patent_app_country] => US
[patent_app_date] => 2018-12-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 21
[patent_no_of_words] => 13932
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 83
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16228017
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/228017 | Muscle cell patches and uses therefor | Dec 19, 2018 | Issued |
Array
(
[id] => 16771200
[patent_doc_number] => 10982295
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-04-20
[patent_title] => Stain
[patent_app_type] => utility
[patent_app_number] => 16/226622
[patent_app_country] => US
[patent_app_date] => 2018-12-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 8
[patent_no_of_words] => 8697
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 79
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16226622
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/226622 | Stain | Dec 18, 2018 | Issued |
Array
(
[id] => 14439621
[patent_doc_number] => 20190177683
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-06-13
[patent_title] => STABILIZATION OF ENZYME-IMMOBILIZED HYDROGELS FOR EXTENDED HYPOXIC CELL CULTURE
[patent_app_type] => utility
[patent_app_number] => 16/212212
[patent_app_country] => US
[patent_app_date] => 2018-12-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7437
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 73
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16212212
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/212212 | Stabilization of enzyme-immobilized hydrogels for extended hypoxic cell culture | Dec 5, 2018 | Issued |
Array
(
[id] => 14227257
[patent_doc_number] => 20190125801
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-05-02
[patent_title] => TUMORICIDAL AND ANTIMICROBIAL COMPOSITIONS AND METHODS
[patent_app_type] => utility
[patent_app_number] => 16/212578
[patent_app_country] => US
[patent_app_date] => 2018-12-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9684
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16212578
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/212578 | Tumoricidal and antimicrobial compositions and methods | Dec 5, 2018 | Issued |
Array
(
[id] => 14808805
[patent_doc_number] => 20190271012
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-09-05
[patent_title] => METHOD FOR PRODUCING A LONG CHAIN DICARBOXYLIC ACID BY FERMENTATION, FERMENTATION BROTH, TREATED FERMENTATION BROTH AND WASTEWATER
[patent_app_type] => utility
[patent_app_number] => 16/207721
[patent_app_country] => US
[patent_app_date] => 2018-12-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12218
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -8
[patent_words_short_claim] => 57
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16207721
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/207721 | Method for producing a long chain dicarboxylic acid by fermentation, fermentation broth, treated fermentation broth and wastewater | Dec 2, 2018 | Issued |
Array
(
[id] => 18801526
[patent_doc_number] => 11834678
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-12-05
[patent_title] => Hematopoietic stem cells with improved properties
[patent_app_type] => utility
[patent_app_number] => 16/762164
[patent_app_country] => US
[patent_app_date] => 2018-11-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 15
[patent_figures_cnt] => 68
[patent_no_of_words] => 30626
[patent_no_of_claims] => 7
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 124
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16762164
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/762164 | Hematopoietic stem cells with improved properties | Nov 13, 2018 | Issued |
Array
(
[id] => 14310173
[patent_doc_number] => 20190144790
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-05-16
[patent_title] => DETERGENT COMPOSITION
[patent_app_type] => utility
[patent_app_number] => 16/188624
[patent_app_country] => US
[patent_app_date] => 2018-11-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12382
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 90
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16188624
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/188624 | Detergent composition | Nov 12, 2018 | Issued |
Array
(
[id] => 14310173
[patent_doc_number] => 20190144790
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-05-16
[patent_title] => DETERGENT COMPOSITION
[patent_app_type] => utility
[patent_app_number] => 16/188624
[patent_app_country] => US
[patent_app_date] => 2018-11-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12382
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 90
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16188624
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/188624 | Detergent composition | Nov 12, 2018 | Issued |
Array
(
[id] => 16941248
[patent_doc_number] => 11053477
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-07-06
[patent_title] => Methods and systems for converting precursor cells into gastric tissues through directed differentiation
[patent_app_type] => utility
[patent_app_number] => 16/188597
[patent_app_country] => US
[patent_app_date] => 2018-11-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 19
[patent_figures_cnt] => 19
[patent_no_of_words] => 17804
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 91
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16188597
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/188597 | Methods and systems for converting precursor cells into gastric tissues through directed differentiation | Nov 12, 2018 | Issued |
Array
(
[id] => 14310173
[patent_doc_number] => 20190144790
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-05-16
[patent_title] => DETERGENT COMPOSITION
[patent_app_type] => utility
[patent_app_number] => 16/188624
[patent_app_country] => US
[patent_app_date] => 2018-11-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12382
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 90
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16188624
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/188624 | Detergent composition | Nov 12, 2018 | Issued |
Array
(
[id] => 14278005
[patent_doc_number] => 20190136287
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-05-09
[patent_title] => Microbial Ecology Shift Assay
[patent_app_type] => utility
[patent_app_number] => 16/181590
[patent_app_country] => US
[patent_app_date] => 2018-11-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 30902
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16181590
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/181590 | Microbial Ecology Shift Assay | Nov 5, 2018 | Abandoned |
Array
(
[id] => 16420597
[patent_doc_number] => 20200345795
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-05
[patent_title] => MODULATION OF INTESTINAL MICROBIOTA IN PRE-DIABETES AND TYPE 2 DIABETES
[patent_app_type] => utility
[patent_app_number] => 16/760577
[patent_app_country] => US
[patent_app_date] => 2018-11-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8644
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 50
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16760577
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/760577 | MODULATION OF INTESTINAL MICROBIOTA IN PRE-DIABETES AND TYPE 2 DIABETES | Oct 31, 2018 | Abandoned |