Hsien Ming Lee
Examiner (ID: 2434, Phone: (571)272-1863 , Office: P/2823 )
Most Active Art Unit | 2823 |
Art Unit(s) | 2823, 2814 |
Total Applications | 2398 |
Issued Applications | 2118 |
Pending Applications | 105 |
Abandoned Applications | 175 |
Applications
Application number | Title of the application | Filing Date | Status |
---|---|---|---|
Array
(
[id] => 13675635
[patent_doc_number] => 20160376551
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-12-29
[patent_title] => METHOD OF MAKING BIOLOGICAL TISSUE COMPONENTS
[patent_app_type] => utility
[patent_app_number] => 15/167132
[patent_app_country] => US
[patent_app_date] => 2016-05-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6911
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 60
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15167132
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/167132 | Method of making biological tissue components | May 26, 2016 | Issued |
Array
(
[id] => 11290720
[patent_doc_number] => 20160340652
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-11-24
[patent_title] => 'CULTURE MEDIUM FOR STEM CELL DIFFERENTIATION'
[patent_app_type] => utility
[patent_app_number] => 15/160650
[patent_app_country] => US
[patent_app_date] => 2016-05-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 42
[patent_figures_cnt] => 42
[patent_no_of_words] => 16089
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15160650
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/160650 | CULTURE MEDIUM FOR STEM CELL DIFFERENTIATION | May 19, 2016 | Abandoned |
Array
(
[id] => 15604855
[patent_doc_number] => 10583472
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-03-10
[patent_title] => Bioremediation composition with a time release material for removing hydrocarbons from contaminated environments
[patent_app_type] => utility
[patent_app_number] => 15/159274
[patent_app_country] => US
[patent_app_date] => 2016-05-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12326
[patent_no_of_claims] => 35
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 138
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15159274
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/159274 | Bioremediation composition with a time release material for removing hydrocarbons from contaminated environments | May 18, 2016 | Issued |
Array
(
[id] => 12751138
[patent_doc_number] => 20180142213
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-05-24
[patent_title] => PANCREATIC STROMAL PROGENITOR CELLS
[patent_app_type] => utility
[patent_app_number] => 15/572768
[patent_app_country] => US
[patent_app_date] => 2016-05-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5522
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -24
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15572768
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/572768 | Pancreatic stromal progenitor cells | May 10, 2016 | Issued |
Array
(
[id] => 11365296
[patent_doc_number] => 20170003278
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-01-05
[patent_title] => 'SCREENING ASSAYS FOR IDENTIFYING DIFFERENTIATION-INDUCING AGENTS AND PRODUCTION OF DIFFERENTIATED CELLS FOR CELL THERAPY'
[patent_app_type] => utility
[patent_app_number] => 15/142807
[patent_app_country] => US
[patent_app_date] => 2016-04-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 21
[patent_figures_cnt] => 21
[patent_no_of_words] => 18615
[patent_no_of_claims] => 12
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15142807
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/142807 | SCREENING ASSAYS FOR IDENTIFYING DIFFERENTIATION-INDUCING AGENTS AND PRODUCTION OF DIFFERENTIATED CELLS FOR CELL THERAPY | Apr 28, 2016 | Abandoned |
Array
(
[id] => 11457345
[patent_doc_number] => 20170051251
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-02-23
[patent_title] => 'System and Method For A Piezoelectric Scaffold For Nerve Growth and Repair'
[patent_app_type] => utility
[patent_app_number] => 15/134639
[patent_app_country] => US
[patent_app_date] => 2016-04-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 10
[patent_no_of_words] => 12009
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15134639
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/134639 | Piezoelectric scaffold for nerve growth and repair | Apr 20, 2016 | Issued |
Array
(
[id] => 12625041
[patent_doc_number] => 20180100177
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-04-12
[patent_title] => BIOMARKER FOR MENTAL DISEASE
[patent_app_type] => utility
[patent_app_number] => 15/566290
[patent_app_country] => US
[patent_app_date] => 2016-04-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15825
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -8
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15566290
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/566290 | Biomarker for mental disease | Apr 14, 2016 | Issued |
Array
(
[id] => 16169694
[patent_doc_number] => 10711245
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-07-14
[patent_title] => Direct conversion method of human fibroblasts into neural stem cells using small molecules
[patent_app_type] => utility
[patent_app_number] => 15/545314
[patent_app_country] => US
[patent_app_date] => 2016-04-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 11
[patent_no_of_words] => 6329
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 29
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15545314
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/545314 | Direct conversion method of human fibroblasts into neural stem cells using small molecules | Apr 11, 2016 | Issued |
Array
(
[id] => 11106200
[patent_doc_number] => 20160303170
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-10-20
[patent_title] => 'METHODS AND MATERIALS FOR REDUCING VENOUS NEOINTIMAL HYPERPLASIA OF AN ARTERIOVENOUS FISTULA OR GRAFT'
[patent_app_type] => utility
[patent_app_number] => 15/097070
[patent_app_country] => US
[patent_app_date] => 2016-04-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 8749
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15097070
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/097070 | Methods and materials for reducing venous neointimal hyperplasia of an arteriovenous fistula or graft | Apr 11, 2016 | Issued |
Array
(
[id] => 12261729
[patent_doc_number] => 20180080925
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-03-22
[patent_title] => 'RESPIRATION DEVICE FOR ANALYSIS OF A RESPONSE TO SHEAR STRESS AND FOREIGN AGENTS ON CELLS'
[patent_app_type] => utility
[patent_app_number] => 15/563140
[patent_app_country] => US
[patent_app_date] => 2016-03-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 17
[patent_no_of_words] => 16983
[patent_no_of_claims] => 41
[patent_no_of_ind_claims] => 7
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15563140
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/563140 | RESPIRATION DEVICE FOR ANALYSIS OF A RESPONSE TO SHEAR STRESS AND FOREIGN AGENTS ON CELLS | Mar 30, 2016 | Abandoned |
Array
(
[id] => 11016061
[patent_doc_number] => 20160213005
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-07-28
[patent_title] => 'CONTROLLED GROWTH OF MICROORGANISMS'
[patent_app_type] => utility
[patent_app_number] => 15/087706
[patent_app_country] => US
[patent_app_date] => 2016-03-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 36607
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 5
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15087706
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/087706 | Controlled growth of microorganisms | Mar 30, 2016 | Issued |
Array
(
[id] => 11350501
[patent_doc_number] => 20160369241
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-12-22
[patent_title] => 'METHODS OF PRIMARY TISSUE CULTURE AND DRUG SCREENING USING AUTOLOGOUS SERUM AND FLUIDS'
[patent_app_type] => utility
[patent_app_number] => 15/075332
[patent_app_country] => US
[patent_app_date] => 2016-03-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 16
[patent_figures_cnt] => 16
[patent_no_of_words] => 16143
[patent_no_of_claims] => 26
[patent_no_of_ind_claims] => 13
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15075332
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/075332 | Methods of primary tissue culture and drug screening using autologous serum and fluids | Mar 20, 2016 | Issued |
Array
(
[id] => 11400411
[patent_doc_number] => 20170020948
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-01-26
[patent_title] => 'PHYTOCOMPLEXES EXHIBITING MULTIPLE, SYNERGISTIC ANTIOXIDANT ACTIVITIES USEFUL IN FOODS, DIETARY SUPPLEMENTS, COSMETICS AND PHARMACEUTICAL PREPARATIONS'
[patent_app_type] => utility
[patent_app_number] => 15/072333
[patent_app_country] => US
[patent_app_date] => 2016-03-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 3
[patent_no_of_words] => 33252
[patent_no_of_claims] => 37
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15072333
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/072333 | Phytocomplexes exhibiting multiple, synergistic antioxidant activities useful in foods, dietary supplements, cosmetics and pharmaceutical preparations | Mar 15, 2016 | Issued |
Array
(
[id] => 12185686
[patent_doc_number] => 20180044622
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-02-15
[patent_title] => 'Immobilized Reaction Device and a Method for Carrying out a Reaction by Utilizing the Immobilization Technology'
[patent_app_type] => utility
[patent_app_number] => 15/557616
[patent_app_country] => US
[patent_app_date] => 2016-03-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 2
[patent_figures_cnt] => 2
[patent_no_of_words] => 8741
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15557616
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/557616 | Immobilized reaction device and a method for carrying out a reaction by utilizing the immobilization technology | Mar 10, 2016 | Issued |
Array
(
[id] => 16892134
[patent_doc_number] => 11033661
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-06-15
[patent_title] => Anti-adhesion material and substitute biomembrane using decellularized tissue
[patent_app_type] => utility
[patent_app_number] => 15/556776
[patent_app_country] => US
[patent_app_date] => 2016-03-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 1
[patent_figures_cnt] => 1
[patent_no_of_words] => 10290
[patent_no_of_claims] => 28
[patent_no_of_ind_claims] => 5
[patent_words_short_claim] => 78
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15556776
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/556776 | Anti-adhesion material and substitute biomembrane using decellularized tissue | Mar 6, 2016 | Issued |
Array
(
[id] => 16320182
[patent_doc_number] => 10780129
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-09-22
[patent_title] => Use of mesenchymal stem cells in treating osteoarthritis
[patent_app_type] => utility
[patent_app_number] => 15/552410
[patent_app_country] => US
[patent_app_date] => 2016-02-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 5089
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 62
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15552410
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/552410 | Use of mesenchymal stem cells in treating osteoarthritis | Feb 21, 2016 | Issued |
Array
(
[id] => 11820555
[patent_doc_number] => 20170209493
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-07-27
[patent_title] => 'STEM CELLS FOR WOUND HEALING'
[patent_app_type] => utility
[patent_app_number] => 15/043171
[patent_app_country] => US
[patent_app_date] => 2016-02-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 18565
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15043171
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/043171 | Stem cells for wound healing | Feb 11, 2016 | Issued |
Array
(
[id] => 16126407
[patent_doc_number] => 10696949
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-06-30
[patent_title] => Systems and methods for canine liver modeling
[patent_app_type] => utility
[patent_app_number] => 15/006754
[patent_app_country] => US
[patent_app_date] => 2016-01-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 14
[patent_no_of_words] => 12486
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 59
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15006754
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/006754 | Systems and methods for canine liver modeling | Jan 25, 2016 | Issued |
Array
(
[id] => 12119073
[patent_doc_number] => 20180002659
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-01-04
[patent_title] => 'CELL CULTURING METHOD AND KIT'
[patent_app_type] => utility
[patent_app_number] => 15/545234
[patent_app_country] => US
[patent_app_date] => 2016-01-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 19643
[patent_no_of_claims] => 37
[patent_no_of_ind_claims] => 20
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15545234
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/545234 | Cell culturing method and kit | Jan 25, 2016 | Issued |
Array
(
[id] => 11038986
[patent_doc_number] => 20160235942
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-08-18
[patent_title] => 'Catheter for cell infusion and method of pressure regulation'
[patent_app_type] => utility
[patent_app_number] => 14/998621
[patent_app_country] => US
[patent_app_date] => 2016-01-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 14145
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 6
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14998621
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/998621 | Catheter for cell infusion and method of pressure regulation | Jan 24, 2016 | Issued |