
Jaime Figueroa
Examiner (ID: 10118, Phone: (571)270-7620 , Office: P/3664 )
| Most Active Art Unit | 3664 |
| Art Unit(s) | 3656, 3664 |
| Total Applications | 1119 |
| Issued Applications | 951 |
| Pending Applications | 63 |
| Abandoned Applications | 129 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 17416201
[patent_doc_number] => 20220051105
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-17
[patent_title] => TRAINING TEACHER MACHINE LEARNING MODELS USING LOSSLESS AND LOSSY BRANCHES
[patent_app_type] => utility
[patent_app_number] => 16/994656
[patent_app_country] => US
[patent_app_date] => 2020-08-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9793
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 145
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16994656
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/994656 | Training teacher machine learning models using lossless and lossy branches | Aug 16, 2020 | Issued |
Array
(
[id] => 16623957
[patent_doc_number] => 20210042610
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-02-11
[patent_title] => ARCHITECTURE TO COMPUTE SPARSE NEURAL NETWORK
[patent_app_type] => utility
[patent_app_number] => 16/995032
[patent_app_country] => US
[patent_app_date] => 2020-08-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3561
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 98
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16995032
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/995032 | ARCHITECTURE TO COMPUTE SPARSE NEURAL NETWORK | Aug 16, 2020 | Pending |
Array
(
[id] => 17416225
[patent_doc_number] => 20220051129
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-17
[patent_title] => BLOCKCHAIN-ENABLED MODEL DRIFT MANAGEMENT
[patent_app_type] => utility
[patent_app_number] => 16/993987
[patent_app_country] => US
[patent_app_date] => 2020-08-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19507
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 45
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16993987
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/993987 | BLOCKCHAIN-ENABLED MODEL DRIFT MANAGEMENT | Aug 13, 2020 | Pending |
Array
(
[id] => 17416175
[patent_doc_number] => 20220051079
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-17
[patent_title] => AUTO-ENCODING USING NEURAL NETWORK ARCHITECTURES BASED ON SYNAPTIC CONNECTIVITY GRAPHS
[patent_app_type] => utility
[patent_app_number] => 16/994487
[patent_app_country] => US
[patent_app_date] => 2020-08-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11115
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 222
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16994487
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/994487 | AUTO-ENCODING USING NEURAL NETWORK ARCHITECTURES BASED ON SYNAPTIC CONNECTIVITY GRAPHS | Aug 13, 2020 | Abandoned |
Array
(
[id] => 16439535
[patent_doc_number] => 20200356861
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-12
[patent_title] => EVALUATING THE VALUE OF CONNECTING A SELECTED PAIR OF UNCONNECTED NODES OF A NODAL NETWORK
[patent_app_type] => utility
[patent_app_number] => 16/929900
[patent_app_country] => US
[patent_app_date] => 2020-07-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 34823
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -20
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16929900
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/929900 | Evaluating the value of connecting a selected pair of unconnected nodes of a nodal network | Jul 14, 2020 | Issued |
Array
(
[id] => 16424248
[patent_doc_number] => 20200349446
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-05
[patent_title] => TRAINING A NODAL NETWORK SO THAT A FIRST NODE HAS A HIGH MAGNITUDE CORRELATION WITH THE PARTIAL DERIVATIVE OF THE OBJECTIVE WITH RESPECT TO A SECOND NODE
[patent_app_type] => utility
[patent_app_number] => 16/930085
[patent_app_country] => US
[patent_app_date] => 2020-07-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 34828
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -6
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16930085
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/930085 | TRAINING A NODAL NETWORK SO THAT A FIRST NODE HAS A HIGH MAGNITUDE CORRELATION WITH THE PARTIAL DERIVATIVE OF THE OBJECTIVE WITH RESPECT TO A SECOND NODE | Jul 14, 2020 | Abandoned |
Array
(
[id] => 16424252
[patent_doc_number] => 20200349450
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-05
[patent_title] => PROJECTION NEURAL NETWORKS
[patent_app_type] => utility
[patent_app_number] => 16/926908
[patent_app_country] => US
[patent_app_date] => 2020-07-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9213
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 214
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16926908
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/926908 | Projection neural networks | Jul 12, 2020 | Issued |
Array
(
[id] => 17216908
[patent_doc_number] => 20210350246
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-11-11
[patent_title] => ALTERING MOTION OF COMPUTER SIMULATION CHARACTERS TO ACCOUNT FOR SIMULATION FORCES IMPOSED ON THE CHARACTERS
[patent_app_type] => utility
[patent_app_number] => 16/871861
[patent_app_country] => US
[patent_app_date] => 2020-05-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4773
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 45
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16871861
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/871861 | ALTERING MOTION OF COMPUTER SIMULATION CHARACTERS TO ACCOUNT FOR SIMULATION FORCES IMPOSED ON THE CHARACTERS | May 10, 2020 | Abandoned |
Array
(
[id] => 16193343
[patent_doc_number] => 20200234192
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-07-23
[patent_title] => TRAINING DISTILLED MACHINE LEARNING MODELS
[patent_app_type] => utility
[patent_app_number] => 16/841859
[patent_app_country] => US
[patent_app_date] => 2020-04-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5134
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 247
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16841859
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/841859 | Training distilled machine learning models | Apr 6, 2020 | Issued |
Array
(
[id] => 16347147
[patent_doc_number] => 20200311798
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-10-01
[patent_title] => SEARCH ENGINE USE OF NEURAL NETWORK REGRESSOR FOR MULTI-MODAL ITEM RECOMMENDATIONS BASED ON VISUAL SEMANTIC EMBEDDINGS
[patent_app_type] => utility
[patent_app_number] => 16/828776
[patent_app_country] => US
[patent_app_date] => 2020-03-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18751
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 144
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16828776
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/828776 | Search engine use of neural network regressor for multi-modal item recommendations based on visual semantic embeddings | Mar 23, 2020 | Issued |
Array
(
[id] => 16161561
[patent_doc_number] => 20200219013
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-07-09
[patent_title] => MACHINE LEARNING FACTORY
[patent_app_type] => utility
[patent_app_number] => 16/823229
[patent_app_country] => US
[patent_app_date] => 2020-03-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19827
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 160
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16823229
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/823229 | MACHINE LEARNING FACTORY | Mar 17, 2020 | Abandoned |
Array
(
[id] => 19276483
[patent_doc_number] => 12026613
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-07-02
[patent_title] => Transfer learning across automated machine learning systems
[patent_app_type] => utility
[patent_app_number] => 16/806626
[patent_app_country] => US
[patent_app_date] => 2020-03-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 11937
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 243
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16806626
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/806626 | Transfer learning across automated machine learning systems | Mar 1, 2020 | Issued |
Array
(
[id] => 18155287
[patent_doc_number] => 11568268
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-01-31
[patent_title] => Deep learning heterogeneous computing method based on layer-wide memory allocation and system thereof
[patent_app_type] => utility
[patent_app_number] => 16/748284
[patent_app_country] => US
[patent_app_date] => 2020-01-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 6
[patent_no_of_words] => 7636
[patent_no_of_claims] => 6
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 489
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16748284
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/748284 | Deep learning heterogeneous computing method based on layer-wide memory allocation and system thereof | Jan 20, 2020 | Issued |
Array
(
[id] => 15839889
[patent_doc_number] => 20200135227
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-04-30
[patent_title] => CONVOLUTIONAL, LONG SHORT-TERM MEMORY, FULLY CONNECTED DEEP NEURAL NETWORKS
[patent_app_type] => utility
[patent_app_number] => 16/731464
[patent_app_country] => US
[patent_app_date] => 2019-12-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8615
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 122
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16731464
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/731464 | Convolutional, long short-term memory, fully connected deep neural networks | Dec 30, 2019 | Issued |
Array
(
[id] => 19340799
[patent_doc_number] => 12050992
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-07-30
[patent_title] => Method for compensating for process variation by means of activation value adjustment in analog binarized neural network circuit, and system therefor
[patent_app_type] => utility
[patent_app_number] => 16/971917
[patent_app_country] => US
[patent_app_date] => 2019-12-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 6811
[patent_no_of_claims] => 9
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 397
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16971917
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/971917 | Method for compensating for process variation by means of activation value adjustment in analog binarized neural network circuit, and system therefor | Dec 30, 2019 | Issued |
Array
(
[id] => 17195336
[patent_doc_number] => 11164095
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-11-02
[patent_title] => Fuzzy curve analysis based soft sensor modeling method using time difference Gaussian process regression
[patent_app_type] => utility
[patent_app_number] => 16/710710
[patent_app_country] => US
[patent_app_date] => 2019-12-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 5
[patent_no_of_words] => 2907
[patent_no_of_claims] => 3
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 171
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16710710
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/710710 | Fuzzy curve analysis based soft sensor modeling method using time difference Gaussian process regression | Dec 10, 2019 | Issued |
Array
(
[id] => 15562543
[patent_doc_number] => 20200065683
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-02-27
[patent_title] => DOMAIN NAME GENERATION AND RANKING
[patent_app_type] => utility
[patent_app_number] => 16/672068
[patent_app_country] => US
[patent_app_date] => 2019-11-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11847
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => 0
[patent_words_short_claim] => 112
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16672068
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/672068 | DOMAIN NAME GENERATION AND RANKING | Oct 31, 2019 | Abandoned |
Array
(
[id] => 16577804
[patent_doc_number] => 20210012205
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-01-14
[patent_title] => LEARNING DEVICE, IDENTIFICATION DEVICE, AND PROGRAM
[patent_app_type] => utility
[patent_app_number] => 16/968721
[patent_app_country] => US
[patent_app_date] => 2019-10-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13384
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 100
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16968721
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/968721 | LEARNING DEVICE, IDENTIFICATION DEVICE, AND PROGRAM | Oct 28, 2019 | Abandoned |
Array
(
[id] => 15530693
[patent_doc_number] => 20200057652
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-02-20
[patent_title] => PROCESSING DEVICE AND RELATED PRODUCTS
[patent_app_type] => utility
[patent_app_number] => 16/663210
[patent_app_country] => US
[patent_app_date] => 2019-10-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10355
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 136
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16663210
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/663210 | Processing device and related products | Oct 23, 2019 | Issued |
Array
(
[id] => 17636792
[patent_doc_number] => 11347516
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-05-31
[patent_title] => Processing device and related products
[patent_app_type] => utility
[patent_app_number] => 16/663205
[patent_app_country] => US
[patent_app_date] => 2019-10-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 14
[patent_no_of_words] => 10407
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 261
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16663205
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/663205 | Processing device and related products | Oct 23, 2019 | Issued |