
James Schultz
Examiner (ID: 14322, Phone: (571)272-0763 , Office: P/1633 )
| Most Active Art Unit | 1633 |
| Art Unit(s) | 1633, 1631, 1635 |
| Total Applications | 977 |
| Issued Applications | 385 |
| Pending Applications | 182 |
| Abandoned Applications | 415 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 10355256
[patent_doc_number] => 20150240261
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-08-27
[patent_title] => 'RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX'
[patent_app_type] => utility
[patent_app_number] => 14/683443
[patent_app_country] => US
[patent_app_date] => 2015-04-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 14
[patent_figures_cnt] => 14
[patent_no_of_words] => 14632
[patent_no_of_claims] => 12
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14683443
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/683443 | RNA-DIRECTED DNA CLEAVAGE BY THE Cas9-crRNA COMPLEX | Apr 9, 2015 | Abandoned |
Array
(
[id] => 11421630
[patent_doc_number] => 20170029774
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-02-02
[patent_title] => 'PRODUCTION OF ENGINEERED T-CELLS BY SLEEPING BEAUTY TRANSPOSON COUPLED WITH METHOTREXATE SELECTION'
[patent_app_type] => utility
[patent_app_number] => 15/302449
[patent_app_country] => US
[patent_app_date] => 2015-04-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 59
[patent_figures_cnt] => 59
[patent_no_of_words] => 38607
[patent_no_of_claims] => 2
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15302449
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/302449 | PRODUCTION OF ENGINEERED T-CELLS BY SLEEPING BEAUTY TRANSPOSON COUPLED WITH METHOTREXATE SELECTION | Apr 7, 2015 | Abandoned |
Array
(
[id] => 10397452
[patent_doc_number] => 20150282459
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-10-08
[patent_title] => 'METHOD OF ESTABLISHING ISOGENIC MULTI-XENOGRAFT MODEL AND THE USE THEREOF'
[patent_app_type] => utility
[patent_app_number] => 14/679924
[patent_app_country] => US
[patent_app_date] => 2015-04-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 6
[patent_no_of_words] => 8050
[patent_no_of_claims] => 23
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14679924
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/679924 | Method of establishing isogenic multi-xenograft model and the use thereof | Apr 5, 2015 | Issued |
Array
(
[id] => 10491549
[patent_doc_number] => 20150376570
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-12-31
[patent_title] => 'METHODS AND COMPOSITIONS FOR PRODUCING INDUCED HEPATOCYTES'
[patent_app_type] => utility
[patent_app_number] => 14/677808
[patent_app_country] => US
[patent_app_date] => 2015-04-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 25
[patent_figures_cnt] => 25
[patent_no_of_words] => 30142
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 9
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14677808
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/677808 | METHODS AND COMPOSITIONS FOR PRODUCING INDUCED HEPATOCYTES | Apr 1, 2015 | Abandoned |
Array
(
[id] => 10374738
[patent_doc_number] => 20150259745
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-09-17
[patent_title] => 'METHOD FOR EVALUATING AND COMPARING IMMUNOREPERTOIRES'
[patent_app_type] => utility
[patent_app_number] => 14/673446
[patent_app_country] => US
[patent_app_date] => 2015-03-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 2
[patent_figures_cnt] => 2
[patent_no_of_words] => 9261
[patent_no_of_claims] => 4
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14673446
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/673446 | METHOD FOR EVALUATING AND COMPARING IMMUNOREPERTOIRES | Mar 29, 2015 | Abandoned |
Array
(
[id] => 13049361
[patent_doc_number] => 10046057
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2018-08-14
[patent_title] => Methods for arranging and packing nucleic acids for unusual resistance to nucleases and targeted delivery for gene therapy
[patent_app_type] => utility
[patent_app_number] => 14/667283
[patent_app_country] => US
[patent_app_date] => 2015-03-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 20
[patent_figures_cnt] => 38
[patent_no_of_words] => 20679
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 109
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14667283
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/667283 | Methods for arranging and packing nucleic acids for unusual resistance to nucleases and targeted delivery for gene therapy | Mar 23, 2015 | Issued |
Array
(
[id] => 11721189
[patent_doc_number] => 09694036
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2017-07-04
[patent_title] => 'Production of midbrain dopaminergic neurons and methods for the use thereof'
[patent_app_type] => utility
[patent_app_number] => 14/664245
[patent_app_country] => US
[patent_app_date] => 2015-03-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 19928
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 63
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14664245
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/664245 | Production of midbrain dopaminergic neurons and methods for the use thereof | Mar 19, 2015 | Issued |
Array
(
[id] => 10374714
[patent_doc_number] => 20150259720
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-09-17
[patent_title] => 'METHODS FOR PRODUCING RECOMBINANT GLYCOPROTEINS WITH MODIFIED GLYCOSYLATION'
[patent_app_type] => utility
[patent_app_number] => 14/660011
[patent_app_country] => US
[patent_app_date] => 2015-03-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 6581
[patent_no_of_claims] => 24
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14660011
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/660011 | Methods for producing recombinant glycoproteins with modified glycosylation | Mar 16, 2015 | Issued |
Array
(
[id] => 11261692
[patent_doc_number] => 09485971
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2016-11-08
[patent_title] => 'Fumarylacetoacetate hydrolase (Fah)-deficient pigs and uses thereof'
[patent_app_type] => utility
[patent_app_number] => 14/657255
[patent_app_country] => US
[patent_app_date] => 2015-03-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 24
[patent_no_of_words] => 25498
[patent_no_of_claims] => 9
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 38
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14657255
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/657255 | Fumarylacetoacetate hydrolase (Fah)-deficient pigs and uses thereof | Mar 12, 2015 | Issued |
Array
(
[id] => 10324389
[patent_doc_number] => 20150209393
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-07-30
[patent_title] => 'ISOLATED NUCLEOTIDE MOLECULE AND METHOD OF SENSING AND KILLING OF PATHOGENIC MICROORGANISM'
[patent_app_type] => utility
[patent_app_number] => 14/644698
[patent_app_country] => US
[patent_app_date] => 2015-03-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 32
[patent_figures_cnt] => 32
[patent_no_of_words] => 14725
[patent_no_of_claims] => 28
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14644698
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/644698 | Isolated nucleotide molecule and method of sensing and killing of pathogenic microorganism | Mar 10, 2015 | Issued |
Array
(
[id] => 11395490
[patent_doc_number] => 20170016025
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-01-19
[patent_title] => 'METHOD FOR GENERATING T-CELLS COMPATIBLE FOR ALLOGENIC TRANSPLANTATION'
[patent_app_type] => utility
[patent_app_number] => 15/123974
[patent_app_country] => US
[patent_app_date] => 2015-03-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 26959
[patent_no_of_claims] => 59
[patent_no_of_ind_claims] => 23
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15123974
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/123974 | METHOD FOR GENERATING T-CELLS COMPATIBLE FOR ALLOGENIC TRANSPLANTATION | Mar 10, 2015 | Abandoned |
Array
(
[id] => 10414775
[patent_doc_number] => 20150299785
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-10-22
[patent_title] => 'METHOD OF MEASURING ADAPTIVE IMMUNITY'
[patent_app_type] => utility
[patent_app_number] => 14/640145
[patent_app_country] => US
[patent_app_date] => 2015-03-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 6
[patent_no_of_words] => 29016
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14640145
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/640145 | METHOD OF MEASURING ADAPTIVE IMMUNITY | Mar 5, 2015 | Abandoned |
Array
(
[id] => 11401981
[patent_doc_number] => 20170022520
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-01-26
[patent_title] => 'MULLER CELL-SPECIFIC PROMOTER'
[patent_app_type] => utility
[patent_app_number] => 15/117722
[patent_app_country] => US
[patent_app_date] => 2015-02-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 1
[patent_figures_cnt] => 1
[patent_no_of_words] => 10496
[patent_no_of_claims] => 12
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15117722
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/117722 | Muller cell-specific promoter | Feb 9, 2015 | Issued |
Array
(
[id] => 11383154
[patent_doc_number] => 20170009210
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-01-12
[patent_title] => 'GUIDED DIFFERENTIATION OF INDUCED PLURIPOTENT STEM CELLS'
[patent_app_type] => utility
[patent_app_number] => 15/115784
[patent_app_country] => US
[patent_app_date] => 2015-02-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 10
[patent_no_of_words] => 4931
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15115784
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/115784 | GUIDED DIFFERENTIATION OF INDUCED PLURIPOTENT STEM CELLS | Feb 3, 2015 | Abandoned |
Array
(
[id] => 11649175
[patent_doc_number] => 20170145077
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-05-25
[patent_title] => 'AN IMPROVED FETAL HEMOGLOBIN FOR GENETIC CORRECTION OF SICKLE CELL DISEASE'
[patent_app_type] => utility
[patent_app_number] => 15/115530
[patent_app_country] => US
[patent_app_date] => 2015-01-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 51
[patent_figures_cnt] => 51
[patent_no_of_words] => 35179
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15115530
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/115530 | Fetal hemoglobin for genetic correction of sickle cell disease | Jan 29, 2015 | Issued |
Array
(
[id] => 13671173
[patent_doc_number] => 20160374320
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-12-29
[patent_title] => HIGH-THROUGHPUT MOUSE MODEL FOR OPTIMIZING ANTIBODY AFFINITIES
[patent_app_type] => utility
[patent_app_number] => 15/112557
[patent_app_country] => US
[patent_app_date] => 2015-01-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24533
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15112557
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/112557 | High-throughput mouse model for optimizing antibody affinities | Jan 22, 2015 | Issued |
Array
(
[id] => 10548744
[patent_doc_number] => 09273359
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2016-03-01
[patent_title] => 'Extracellular vesicles derived from Gram-positive bacteria, and use thereof'
[patent_app_type] => utility
[patent_app_number] => 14/593933
[patent_app_country] => US
[patent_app_date] => 2015-01-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 28
[patent_figures_cnt] => 54
[patent_no_of_words] => 15960
[patent_no_of_claims] => 4
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 147
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14593933
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/593933 | Extracellular vesicles derived from Gram-positive bacteria, and use thereof | Jan 8, 2015 | Issued |
Array
(
[id] => 10240522
[patent_doc_number] => 20150125518
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-05-07
[patent_title] => 'ORALLY BIOAVAILABLE LIPID-BASED CONSTRUCTS'
[patent_app_type] => utility
[patent_app_number] => 14/592205
[patent_app_country] => US
[patent_app_date] => 2015-01-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 11
[patent_no_of_words] => 12045
[patent_no_of_claims] => 27
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14592205
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/592205 | Orally bioavailable lipid-based constructs | Jan 7, 2015 | Issued |
Array
(
[id] => 10296846
[patent_doc_number] => 20150181845
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-07-02
[patent_title] => 'INHIBITION OF DELTA-6 DESATURASE FOR THE TREATMENT OF CARDIOMETABOLIC DISEASE'
[patent_app_type] => utility
[patent_app_number] => 14/592131
[patent_app_country] => US
[patent_app_date] => 2015-01-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 13
[patent_no_of_words] => 10283
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14592131
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/592131 | INHIBITION OF DELTA-6 DESATURASE FOR THE TREATMENT OF CARDIOMETABOLIC DISEASE | Jan 7, 2015 | Abandoned |
Array
(
[id] => 10365888
[patent_doc_number] => 20150250892
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-09-10
[patent_title] => 'BIODEGRADABLE POLYMERIC BUFFERS'
[patent_app_type] => utility
[patent_app_number] => 14/588808
[patent_app_country] => US
[patent_app_date] => 2015-01-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 30
[patent_figures_cnt] => 30
[patent_no_of_words] => 13194
[patent_no_of_claims] => 26
[patent_no_of_ind_claims] => 5
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14588808
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/588808 | BIODEGRADABLE POLYMERIC BUFFERS | Jan 1, 2015 | Abandoned |