
James Schultz
Examiner (ID: 14322, Phone: (571)272-0763 , Office: P/1633 )
| Most Active Art Unit | 1633 |
| Art Unit(s) | 1633, 1631, 1635 |
| Total Applications | 977 |
| Issued Applications | 385 |
| Pending Applications | 182 |
| Abandoned Applications | 415 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 14501281
[patent_doc_number] => 20190194295
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-06-27
[patent_title] => VIRAL VECTORS ENCODING RECOMBINANT FVIII VARIANTS WITH INCREASED EXPRESSION FOR GENE THERAPY OF HEMOPHILIA A
[patent_app_type] => utility
[patent_app_number] => 16/211202
[patent_app_country] => US
[patent_app_date] => 2018-12-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 35237
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16211202
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/211202 | Viral vectors encoding recombinant FVIII variants with increased expression for gene therapy of hemophilia A | Dec 4, 2018 | Issued |
Array
(
[id] => 13902375
[patent_doc_number] => 20190040392
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-02-07
[patent_title] => TARGETED MRNA FOR IN VIVO APPLICATION
[patent_app_type] => utility
[patent_app_number] => 16/165598
[patent_app_country] => US
[patent_app_date] => 2018-10-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7428
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -20
[patent_words_short_claim] => 47
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16165598
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/165598 | TARGETED MRNA FOR IN VIVO APPLICATION | Oct 18, 2018 | Abandoned |
Array
(
[id] => 18525473
[patent_doc_number] => 11712451
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-08-01
[patent_title] => Agent for promoting wound healing comprising platelet-like cell co-expressing platelet surface antigen and mesenchymal cell surface antigen
[patent_app_type] => utility
[patent_app_number] => 16/162546
[patent_app_country] => US
[patent_app_date] => 2018-10-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 4
[patent_no_of_words] => 18417
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 156
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16162546
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/162546 | Agent for promoting wound healing comprising platelet-like cell co-expressing platelet surface antigen and mesenchymal cell surface antigen | Oct 16, 2018 | Issued |
Array
(
[id] => 14072895
[patent_doc_number] => 20190085335
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-03-21
[patent_title] => IN-VITRO INDUCTION OF ADULT STEM CELL EXPANSION AND DERIVATION
[patent_app_type] => utility
[patent_app_number] => 16/135723
[patent_app_country] => US
[patent_app_date] => 2018-09-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11425
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -23
[patent_words_short_claim] => 79
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16135723
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/135723 | In-vitro induction of adult stem cell expansion and derivation | Sep 18, 2018 | Issued |
Array
(
[id] => 15527795
[patent_doc_number] => 20200056203
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-02-20
[patent_title] => Treating Animal Cancers Through Programmed Cancer Cell Death
[patent_app_type] => utility
[patent_app_number] => 16/104161
[patent_app_country] => US
[patent_app_date] => 2018-08-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14995
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -66
[patent_words_short_claim] => 16
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16104161
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/104161 | Treating Animal Cancers Through Programmed Cancer Cell Death | Aug 16, 2018 | Abandoned |
Array
(
[id] => 16312615
[patent_doc_number] => 20200291353
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-09-17
[patent_title] => METHOD FOR PRODUCING CELL FLAPS
[patent_app_type] => utility
[patent_app_number] => 16/639955
[patent_app_country] => US
[patent_app_date] => 2018-08-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7656
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -22
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16639955
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/639955 | METHOD FOR PRODUCING CELL FLAPS | Aug 9, 2018 | Abandoned |
Array
(
[id] => 14372545
[patent_doc_number] => 20190160185
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-05-30
[patent_title] => MODIFIED NUCLEOSIDES, NUCLEOTIDES, AND NUCLEIC ACIDS, AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/047574
[patent_app_country] => US
[patent_app_date] => 2018-07-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22546
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16047574
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/047574 | MODIFIED NUCLEOSIDES, NUCLEOTIDES, AND NUCLEIC ACIDS, AND USES THEREOF | Jul 26, 2018 | Abandoned |
Array
(
[id] => 18342032
[patent_doc_number] => 11639508
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-05-02
[patent_title] => Engineered TSC2
[patent_app_type] => utility
[patent_app_number] => 16/631069
[patent_app_country] => US
[patent_app_date] => 2018-07-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 90
[patent_figures_cnt] => 95
[patent_no_of_words] => 26582
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 97
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16631069
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/631069 | Engineered TSC2 | Jul 12, 2018 | Issued |
Array
(
[id] => 16861772
[patent_doc_number] => 11020494
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-06-01
[patent_title] => Animal models for nonalcoholic fatty liver disease
[patent_app_type] => utility
[patent_app_number] => 16/013953
[patent_app_country] => US
[patent_app_date] => 2018-06-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 18
[patent_figures_cnt] => 68
[patent_no_of_words] => 12054
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 94
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16013953
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/013953 | Animal models for nonalcoholic fatty liver disease | Jun 20, 2018 | Issued |
Array
(
[id] => 13590007
[patent_doc_number] => 20180346552
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-06
[patent_title] => FETAL HEMOGLOBIN FOR GENETIC CORRECTION OF SICKLE CELL DISEASE
[patent_app_type] => utility
[patent_app_number] => 15/995675
[patent_app_country] => US
[patent_app_date] => 2018-06-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 32690
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -23
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15995675
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/995675 | Fetal hemoglobin for genetic correction of sickle cell disease | May 31, 2018 | Issued |
Array
(
[id] => 13563877
[patent_doc_number] => 20180333486
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-11-22
[patent_title] => Engineered Cells Expressing Multiple Immunomodulators and Uses Thereof
[patent_app_type] => utility
[patent_app_number] => 15/988333
[patent_app_country] => US
[patent_app_date] => 2018-05-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 50716
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15988333
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/988333 | Engineered Cells Expressing Multiple Immunomodulators and Uses Thereof | May 23, 2018 | Abandoned |
Array
(
[id] => 14214529
[patent_doc_number] => 20190119649
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-04-25
[patent_title] => METHODS FOR GENERATING AUGMENTED STEM CELL-DERIVED BETA CELLS AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 15/982925
[patent_app_country] => US
[patent_app_date] => 2018-05-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9938
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 25
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15982925
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/982925 | METHODS FOR GENERATING AUGMENTED STEM CELL-DERIVED BETA CELLS AND USES THEREOF | May 16, 2018 | Abandoned |
Array
(
[id] => 17858540
[patent_doc_number] => 11439678
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-09-13
[patent_title] => Oncolytic adenoviruses armed with heterologous genes
[patent_app_type] => utility
[patent_app_number] => 15/967093
[patent_app_country] => US
[patent_app_date] => 2018-04-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 49
[patent_figures_cnt] => 162
[patent_no_of_words] => 43215
[patent_no_of_claims] => 27
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 95
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15967093
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/967093 | Oncolytic adenoviruses armed with heterologous genes | Apr 29, 2018 | Issued |
Array
(
[id] => 17377016
[patent_doc_number] => 11235005
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-02-01
[patent_title] => Primed muscle progenitor cells and uses thereof
[patent_app_type] => utility
[patent_app_number] => 15/964784
[patent_app_country] => US
[patent_app_date] => 2018-04-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 23
[patent_no_of_words] => 6992
[patent_no_of_claims] => 9
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 100
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15964784
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/964784 | Primed muscle progenitor cells and uses thereof | Apr 26, 2018 | Issued |
Array
(
[id] => 13563817
[patent_doc_number] => 20180333456
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-11-22
[patent_title] => OPTICALLY-CONTROLLED CNS DYSFUNCTION
[patent_app_type] => utility
[patent_app_number] => 15/957608
[patent_app_country] => US
[patent_app_date] => 2018-04-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18636
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15957608
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/957608 | OPTICALLY-CONTROLLED CNS DYSFUNCTION | Apr 18, 2018 | Abandoned |
Array
(
[id] => 16367192
[patent_doc_number] => 10798923
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-10-13
[patent_title] => Blue transgenic fluorescent ornamental fish
[patent_app_type] => utility
[patent_app_number] => 15/949675
[patent_app_country] => US
[patent_app_date] => 2018-04-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 2778
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 74
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15949675
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/949675 | Blue transgenic fluorescent ornamental fish | Apr 9, 2018 | Issued |
Array
(
[id] => 13339767
[patent_doc_number] => 20180221423
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-08-09
[patent_title] => SYNTHETIC ADENOVIRUSES WITH TROPISM TO DAMAGED TISSUE FOR USE IN PROMOTING WOUND REPAIR AND TISSUE REGENERATION
[patent_app_type] => utility
[patent_app_number] => 15/945079
[patent_app_country] => US
[patent_app_date] => 2018-04-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13657
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 15
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15945079
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/945079 | Synthetic adenoviruses with tropism to damaged tissue for use in promoting wound repair and tissue regeneration | Apr 3, 2018 | Issued |
Array
(
[id] => 17191762
[patent_doc_number] => 11160488
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-11-02
[patent_title] => Reagents and methods for modulating cone photoreceptor activity
[patent_app_type] => utility
[patent_app_number] => 15/939674
[patent_app_country] => US
[patent_app_date] => 2018-03-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 14615
[patent_no_of_claims] => 5
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 96
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15939674
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/939674 | Reagents and methods for modulating cone photoreceptor activity | Mar 28, 2018 | Issued |
Array
(
[id] => 18202540
[patent_doc_number] => 11584923
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-02-21
[patent_title] => Compositions of adenosine deaminase-2 (ADA2), variants thereof and methods of using same
[patent_app_type] => utility
[patent_app_number] => 15/940803
[patent_app_country] => US
[patent_app_date] => 2018-03-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 133192
[patent_no_of_claims] => 53
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 86
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15940803
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/940803 | Compositions of adenosine deaminase-2 (ADA2), variants thereof and methods of using same | Mar 28, 2018 | Issued |
Array
(
[id] => 14019351
[patent_doc_number] => 20190071669
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-03-07
[patent_title] => LIPID ENCAPSULATING INTERFERING RNA
[patent_app_type] => utility
[patent_app_number] => 15/936284
[patent_app_country] => US
[patent_app_date] => 2018-03-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 25886
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15936284
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/936284 | LIPID ENCAPSULATING INTERFERING RNA | Mar 25, 2018 | Abandoned |