
James Schultz
Examiner (ID: 14322, Phone: (571)272-0763 , Office: P/1633 )
| Most Active Art Unit | 1633 |
| Art Unit(s) | 1633, 1631, 1635 |
| Total Applications | 977 |
| Issued Applications | 385 |
| Pending Applications | 182 |
| Abandoned Applications | 415 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 12240151
[patent_doc_number] => 20180073015
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-03-15
[patent_title] => 'METHOD OF MEASURING ADAPTIVE IMMUNITY'
[patent_app_type] => utility
[patent_app_number] => 15/709719
[patent_app_country] => US
[patent_app_date] => 2017-09-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13379
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15709719
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/709719 | Method of measuring adaptive immunity | Sep 19, 2017 | Issued |
Array
(
[id] => 18558762
[patent_doc_number] => 11723987
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-08-15
[patent_title] => Double suicide gene vector systems for stem cells
[patent_app_type] => utility
[patent_app_number] => 16/333962
[patent_app_country] => US
[patent_app_date] => 2017-09-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 20
[patent_figures_cnt] => 24
[patent_no_of_words] => 15506
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 142
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16333962
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/333962 | Double suicide gene vector systems for stem cells | Sep 14, 2017 | Issued |
Array
(
[id] => 15279913
[patent_doc_number] => 10512606
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-12-24
[patent_title] => Liposome structures and methods of use thereof
[patent_app_type] => utility
[patent_app_number] => 15/691130
[patent_app_country] => US
[patent_app_date] => 2017-08-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 33
[patent_figures_cnt] => 49
[patent_no_of_words] => 10150
[patent_no_of_claims] => 24
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 70
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15691130
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/691130 | Liposome structures and methods of use thereof | Aug 29, 2017 | Issued |
Array
(
[id] => 16443718
[patent_doc_number] => 10835622
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-11-17
[patent_title] => Mode of inducing renal transplant rejection on animals and its manufacturing approach
[patent_app_type] => utility
[patent_app_number] => 15/671919
[patent_app_country] => US
[patent_app_date] => 2017-08-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 2683
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 147
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15671919
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/671919 | Mode of inducing renal transplant rejection on animals and its manufacturing approach | Aug 7, 2017 | Issued |
Array
(
[id] => 12217409
[patent_doc_number] => 20180055768
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-03-01
[patent_title] => 'ARRDC1-MEDIATED MICROVESICLES (ARMMS) AND USES THEREOF'
[patent_app_type] => utility
[patent_app_number] => 15/669720
[patent_app_country] => US
[patent_app_date] => 2017-08-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 16
[patent_figures_cnt] => 16
[patent_no_of_words] => 25840
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15669720
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/669720 | ARRDC1-mediated microvesicles (ARMMS) and uses thereof | Aug 3, 2017 | Issued |
Array
(
[id] => 12746374
[patent_doc_number] => 20180140625
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-05-24
[patent_title] => PRODUCTION OF STABLE NON-POLYADENYLATED RNAS
[patent_app_type] => utility
[patent_app_number] => 15/664017
[patent_app_country] => US
[patent_app_date] => 2017-07-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 31631
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15664017
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/664017 | Production of stable non-polyadenylated RNAs | Jul 30, 2017 | Issued |
Array
(
[id] => 12980629
[patent_doc_number] => 20170342418
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-11-30
[patent_title] => USE OF MICRORNA PRECURSORS AS DRUGS FOR INDUCING CD34-POSITIVE ADULT STEM CELL EXPANSION
[patent_app_type] => utility
[patent_app_number] => 15/661346
[patent_app_country] => US
[patent_app_date] => 2017-07-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13417
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 105
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15661346
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/661346 | USE OF MICRORNA PRECURSORS AS DRUGS FOR INDUCING CD34-POSITIVE ADULT STEM CELL EXPANSION | Jul 26, 2017 | Abandoned |
Array
(
[id] => 12092781
[patent_doc_number] => 20170349875
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-12-07
[patent_title] => 'Cell Separation Devices, Systems, and Methods'
[patent_app_type] => utility
[patent_app_number] => 15/637573
[patent_app_country] => US
[patent_app_date] => 2017-06-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 24744
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15637573
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/637573 | Cell Separation Devices, Systems, and Methods | Jun 28, 2017 | Abandoned |
Array
(
[id] => 12150120
[patent_doc_number] => 20180021383
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-01-25
[patent_title] => 'PRODUCTION OF MIDBRAIN DOPAMINERGIC NEURONS AND METHODS FOR THE USE THEREOF'
[patent_app_type] => utility
[patent_app_number] => 15/614755
[patent_app_country] => US
[patent_app_date] => 2017-06-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 11
[patent_no_of_words] => 19949
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15614755
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/614755 | Production of midbrain dopaminergic neurons and methods for the use thereof | Jun 5, 2017 | Issued |
Array
(
[id] => 16956270
[patent_doc_number] => 11060114
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-07-13
[patent_title] => Targeted elimination of bacterial genes
[patent_app_type] => utility
[patent_app_number] => 15/605098
[patent_app_country] => US
[patent_app_date] => 2017-05-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 11
[patent_no_of_words] => 32760
[patent_no_of_claims] => 27
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 158
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15605098
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/605098 | Targeted elimination of bacterial genes | May 24, 2017 | Issued |
Array
(
[id] => 16290338
[patent_doc_number] => 10767175
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-09-08
[patent_title] => High specificity genome editing using chemically modified guide RNAs
[patent_app_type] => utility
[patent_app_number] => 15/493129
[patent_app_country] => US
[patent_app_date] => 2017-04-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 24
[patent_figures_cnt] => 27
[patent_no_of_words] => 52888
[patent_no_of_claims] => 23
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 128
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15493129
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/493129 | High specificity genome editing using chemically modified guide RNAs | Apr 19, 2017 | Issued |
Array
(
[id] => 11994236
[patent_doc_number] => 20170298391
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-10-19
[patent_title] => 'CONDITIONAL RESCUE SYSTEM, CELLS, AND METHODS'
[patent_app_type] => utility
[patent_app_number] => 15/491545
[patent_app_country] => US
[patent_app_date] => 2017-04-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 4304
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15491545
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/491545 | CONDITIONAL RESCUE SYSTEM, CELLS, AND METHODS | Apr 18, 2017 | Abandoned |
Array
(
[id] => 11850242
[patent_doc_number] => 20170224734
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-08-10
[patent_title] => 'Tumor Infiltrating Cells Engineered to Express a Pro-Inflammatory Polypeptide'
[patent_app_type] => utility
[patent_app_number] => 15/488139
[patent_app_country] => US
[patent_app_date] => 2017-04-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 14
[patent_figures_cnt] => 14
[patent_no_of_words] => 34881
[patent_no_of_claims] => 59
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15488139
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/488139 | Tumor infiltrating cells engineered to express a pro-inflammatory polypeptide | Apr 13, 2017 | Issued |
Array
(
[id] => 12059043
[patent_doc_number] => 20170335386
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-11-23
[patent_title] => 'METHOD OF MEASURING ADAPTIVE IMMUNITY'
[patent_app_type] => utility
[patent_app_number] => 15/475613
[patent_app_country] => US
[patent_app_date] => 2017-03-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 6
[patent_no_of_words] => 28919
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15475613
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/475613 | METHOD OF MEASURING ADAPTIVE IMMUNITY | Mar 30, 2017 | Abandoned |
Array
(
[id] => 11977530
[patent_doc_number] => 20170281685
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-10-05
[patent_title] => 'NOBLE GAS AUGMENTATION OF REGENERATIVE CELL ACTIVITY'
[patent_app_type] => utility
[patent_app_number] => 15/465514
[patent_app_country] => US
[patent_app_date] => 2017-03-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14061
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15465514
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/465514 | NOBLE GAS AUGMENTATION OF REGENERATIVE CELL ACTIVITY | Mar 20, 2017 | Abandoned |
Array
(
[id] => 16681942
[patent_doc_number] => 10941409
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-03-09
[patent_title] => Method for gene optimization
[patent_app_type] => utility
[patent_app_number] => 15/451231
[patent_app_country] => US
[patent_app_date] => 2017-03-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 14
[patent_figures_cnt] => 26
[patent_no_of_words] => 10772
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 308
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15451231
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/451231 | Method for gene optimization | Mar 5, 2017 | Issued |
Array
(
[id] => 11706272
[patent_doc_number] => 20170174771
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-06-22
[patent_title] => 'ANTI-EPIDERMAL GROWTH FACTOR RECEPTOR VARIANT III CHIMERIC ANTIGEN RECEPTORS AND USE OF SAME FOR THE TREATMENT OF CANCER'
[patent_app_type] => utility
[patent_app_number] => 15/448707
[patent_app_country] => US
[patent_app_date] => 2017-03-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 16998
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15448707
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/448707 | Anti-epidermal growth factor receptor variant III chimeric antigen receptors and use of same for the treatment of cancer | Mar 2, 2017 | Issued |
Array
(
[id] => 11979617
[patent_doc_number] => 20170283770
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-10-05
[patent_title] => 'DOWNREGULATION OF SINE/ALU RETROTRANSPOSON TRANSCRIPTION TO INDUCE OR RESTORE PROLIFERATIVE CAPACITY AND/OR PLURIPOTENCY TO A STEM CELL'
[patent_app_type] => utility
[patent_app_number] => 15/445708
[patent_app_country] => US
[patent_app_date] => 2017-02-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 42
[patent_figures_cnt] => 42
[patent_no_of_words] => 31444
[patent_no_of_claims] => 39
[patent_no_of_ind_claims] => 13
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15445708
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/445708 | DOWNREGULATION OF SINE/ALU RETROTRANSPOSON TRANSCRIPTION TO INDUCE OR RESTORE PROLIFERATIVE CAPACITY AND/OR PLURIPOTENCY TO A STEM CELL | Feb 27, 2017 | Abandoned |
Array
(
[id] => 11706619
[patent_doc_number] => 20170175118
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-06-22
[patent_title] => 'COMPOSITION AND METHOD OF USING MIR-302 PRECURSORS AS ANTI-CANCER DRUGS FOR TREATING HUMAN LUNG CANCER'
[patent_app_type] => utility
[patent_app_number] => 15/442557
[patent_app_country] => US
[patent_app_date] => 2017-02-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 28
[patent_figures_cnt] => 28
[patent_no_of_words] => 19326
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15442557
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/442557 | Composition and method of using miR-302 precursors as anti-cancer drugs for treating human lung cancer | Feb 23, 2017 | Issued |
Array
(
[id] => 16361359
[patent_doc_number] => 20200318110
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-10-08
[patent_title] => A COMPOSITION AND METHOD OF USING MIR-302 PRECURSORS AS ANTI-CANCER DRUGS FOR TREATING HUMAN LUNG CANCER
[patent_app_type] => utility
[patent_app_number] => 16/305030
[patent_app_country] => US
[patent_app_date] => 2017-02-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17388
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 71
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16305030
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/305030 | A COMPOSITION AND METHOD OF USING MIR-302 PRECURSORS AS ANTI-CANCER DRUGS FOR TREATING HUMAN LUNG CANCER | Feb 23, 2017 | Abandoned |