
James Schultz
Examiner (ID: 14322, Phone: (571)272-0763 , Office: P/1633 )
| Most Active Art Unit | 1633 |
| Art Unit(s) | 1633, 1631, 1635 |
| Total Applications | 977 |
| Issued Applications | 385 |
| Pending Applications | 182 |
| Abandoned Applications | 415 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 13338205
[patent_doc_number] => 20180220642
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-08-09
[patent_title] => MATERIALS AND METHODS FOR TREATING AND EVALUATING ISCHEMIC AND/OR REPERFUSION-INJURED TISSUE AND/OR TISSUE SUSCEPTIBLE TO SAME
[patent_app_type] => utility
[patent_app_number] => 15/748102
[patent_app_country] => US
[patent_app_date] => 2016-07-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8493
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -36
[patent_words_short_claim] => 16
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15748102
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/748102 | MATERIALS AND METHODS FOR TREATING AND EVALUATING ISCHEMIC AND/OR REPERFUSION-INJURED TISSUE AND/OR TISSUE SUSCEPTIBLE TO SAME | Jul 28, 2016 | Abandoned |
Array
(
[id] => 11129520
[patent_doc_number] => 20160326495
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-11-10
[patent_title] => 'Generation of Pancreatic Endoderm from Pluripotent Stem Cells using Small Molecules'
[patent_app_type] => utility
[patent_app_number] => 15/215807
[patent_app_country] => US
[patent_app_date] => 2016-07-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 6917
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15215807
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/215807 | Generation of pancreatic endoderm from pluripotent stem cells using small molecules | Jul 20, 2016 | Issued |
Array
(
[id] => 11756073
[patent_doc_number] => 20170202940
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-07-20
[patent_title] => 'TRANSGENIC ALGAE FOR DELIVERING ANTIGENS TO AN ANIMAL'
[patent_app_type] => utility
[patent_app_number] => 15/211194
[patent_app_country] => US
[patent_app_date] => 2016-07-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 10427
[patent_no_of_claims] => 5
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15211194
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/211194 | TRANSGENIC ALGAE FOR DELIVERING ANTIGENS TO AN ANIMAL | Jul 14, 2016 | Abandoned |
Array
(
[id] => 13314775
[patent_doc_number] => 20180208924
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-07-26
[patent_title] => METHOD FOR INTRODUCING SITE-DIRECTED RNA MUTATION, TARGET EDITING GUIDE RNA USED IN THE METHOD AND TARGET RNA-TARGET EDITING GUIDE RNA COMPLEX
[patent_app_type] => utility
[patent_app_number] => 15/744771
[patent_app_country] => US
[patent_app_date] => 2016-07-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 23425
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15744771
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/744771 | Method for introducing site-directed RNA mutation, target editing guide RNA used in the method and target RNA-target editing guide RNA complex | Jul 13, 2016 | Issued |
Array
(
[id] => 13297299
[patent_doc_number] => 20180200186
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-07-19
[patent_title] => COMPOSITIONS AND METHODS FOR TREATING LUNG DISEASES AND LUNG INJURY
[patent_app_type] => utility
[patent_app_number] => 15/742812
[patent_app_country] => US
[patent_app_date] => 2016-07-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 31791
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -64
[patent_words_short_claim] => 14
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15742812
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/742812 | COMPOSITIONS AND METHODS FOR TREATING LUNG DISEASES AND LUNG INJURY | Jul 10, 2016 | Abandoned |
Array
(
[id] => 11381613
[patent_doc_number] => 20170007669
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-01-12
[patent_title] => 'PEPTIDE-MEDIATED DELIVERY OF ACTIVE AGENTS ACROSS THE BLOOD-BRAIN BARRIER'
[patent_app_type] => utility
[patent_app_number] => 15/204615
[patent_app_country] => US
[patent_app_date] => 2016-07-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 15920
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15204615
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/204615 | PEPTIDE-MEDIATED DELIVERY OF ACTIVE AGENTS ACROSS THE BLOOD-BRAIN BARRIER | Jul 6, 2016 | Abandoned |
Array
(
[id] => 11678569
[patent_doc_number] => 09677086
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2017-06-13
[patent_title] => 'Promoter-regulated differentiation-dependent self-deleting cassette'
[patent_app_type] => utility
[patent_app_number] => 15/200832
[patent_app_country] => US
[patent_app_date] => 2016-07-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 13552
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 104
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15200832
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/200832 | Promoter-regulated differentiation-dependent self-deleting cassette | Jun 30, 2016 | Issued |
Array
(
[id] => 17451911
[patent_doc_number] => 11266748
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-03-08
[patent_title] => Recombinant adeno-associated virus vectors to target medullary thyroid carcinoma
[patent_app_type] => utility
[patent_app_number] => 15/741253
[patent_app_country] => US
[patent_app_date] => 2016-07-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 14
[patent_no_of_words] => 12025
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 82
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15741253
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/741253 | Recombinant adeno-associated virus vectors to target medullary thyroid carcinoma | Jun 30, 2016 | Issued |
Array
(
[id] => 11106223
[patent_doc_number] => 20160303192
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-10-20
[patent_title] => 'OPTICALLY-CONTROLLED CNS DYSFUNCTION'
[patent_app_type] => utility
[patent_app_number] => 15/194379
[patent_app_country] => US
[patent_app_date] => 2016-06-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 22
[patent_figures_cnt] => 22
[patent_no_of_words] => 19671
[patent_no_of_claims] => 31
[patent_no_of_ind_claims] => 13
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15194379
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/194379 | Optically-controlled CNS dysfunction | Jun 26, 2016 | Issued |
Array
(
[id] => 18355276
[patent_doc_number] => 11643668
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-05-09
[patent_title] => CRISPR/Cas9 complex for genomic editing
[patent_app_type] => utility
[patent_app_number] => 15/737132
[patent_app_country] => US
[patent_app_date] => 2016-06-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 29
[patent_figures_cnt] => 36
[patent_no_of_words] => 20268
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 200
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15737132
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/737132 | CRISPR/Cas9 complex for genomic editing | Jun 16, 2016 | Issued |
Array
(
[id] => 13929603
[patent_doc_number] => 20190048317
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-02-14
[patent_title] => Method for Producing Highly Functional Platelets
[patent_app_type] => utility
[patent_app_number] => 15/735685
[patent_app_country] => US
[patent_app_date] => 2016-06-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12350
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 32
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15735685
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/735685 | Method for producing highly functional platelets | Jun 15, 2016 | Issued |
Array
(
[id] => 11362846
[patent_doc_number] => 20170000827
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-01-05
[patent_title] => 'BROWN ADIPOCYTE MODIFICATION'
[patent_app_type] => utility
[patent_app_number] => 15/175777
[patent_app_country] => US
[patent_app_date] => 2016-06-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 3
[patent_no_of_words] => 12966
[patent_no_of_claims] => 29
[patent_no_of_ind_claims] => 12
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15175777
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/175777 | Brown adipocyte modification | Jun 6, 2016 | Issued |
Array
(
[id] => 11092715
[patent_doc_number] => 20160289682
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-10-06
[patent_title] => 'PRODUCTION AND UTILIZATION OF A NOVEL ANTI-CANCER DRUG IN THERAPY'
[patent_app_type] => utility
[patent_app_number] => 15/167219
[patent_app_country] => US
[patent_app_date] => 2016-05-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 38
[patent_figures_cnt] => 38
[patent_no_of_words] => 26284
[patent_no_of_claims] => 12
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15167219
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/167219 | PRODUCTION AND UTILIZATION OF A NOVEL ANTI-CANCER DRUG IN THERAPY | May 26, 2016 | Abandoned |
Array
(
[id] => 12808594
[patent_doc_number] => 20180161368
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-06-14
[patent_title] => COMPOSITION AND METHODS FOR REGULATING INHIBITORY INTERACTIONS IN GENETICALLY ENGINEERED CELLS
[patent_app_type] => utility
[patent_app_number] => 15/575330
[patent_app_country] => US
[patent_app_date] => 2016-05-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 50813
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -150
[patent_words_short_claim] => 37
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15575330
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/575330 | COMPOSITION AND METHODS FOR REGULATING INHIBITORY INTERACTIONS IN GENETICALLY ENGINEERED CELLS | May 26, 2016 | Abandoned |
Array
(
[id] => 12145019
[patent_doc_number] => 09879263
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2018-01-30
[patent_title] => 'Use of microRNA precursors as drugs for inducing CD34-positive adult stem cell expansion'
[patent_app_type] => utility
[patent_app_number] => 15/167226
[patent_app_country] => US
[patent_app_date] => 2016-05-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 22
[patent_no_of_words] => 14885
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 254
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15167226
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/167226 | Use of microRNA precursors as drugs for inducing CD34-positive adult stem cell expansion | May 26, 2016 | Issued |
Array
(
[id] => 11100900
[patent_doc_number] => 20160297871
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-10-13
[patent_title] => 'Transgenic Chicken Comprising an Inactivated Immunoglobulin Gene'
[patent_app_type] => utility
[patent_app_number] => 15/167876
[patent_app_country] => US
[patent_app_date] => 2016-05-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 7647
[patent_no_of_claims] => 12
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15167876
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/167876 | Transgenic chicken comprising an inactivated immunoglobulin gene | May 26, 2016 | Issued |
Array
(
[id] => 12791521
[patent_doc_number] => 20180155676
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-06-07
[patent_title] => CELL CULTURING METHOD USING NUCLEIC ACID-CONTAINING MEDIUM
[patent_app_type] => utility
[patent_app_number] => 15/576441
[patent_app_country] => US
[patent_app_date] => 2016-05-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6725
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -20
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15576441
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/576441 | Cell culturing method using nucleic acid-containing medium | May 25, 2016 | Issued |
Array
(
[id] => 14662633
[patent_doc_number] => 10369193
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-08-06
[patent_title] => Gene therapy for neurodegenerative disorders
[patent_app_type] => utility
[patent_app_number] => 15/160949
[patent_app_country] => US
[patent_app_date] => 2016-05-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 39
[patent_no_of_words] => 21830
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 56
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15160949
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/160949 | Gene therapy for neurodegenerative disorders | May 19, 2016 | Issued |
Array
(
[id] => 11066284
[patent_doc_number] => 20160263248
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-09-15
[patent_title] => 'METHOD FOR ENHANCED UPTAKE OF VIRAL VECTORS IN THE MYOCARDIUM'
[patent_app_type] => utility
[patent_app_number] => 15/157718
[patent_app_country] => US
[patent_app_date] => 2016-05-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 19241
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15157718
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/157718 | METHOD FOR ENHANCED UPTAKE OF VIRAL VECTORS IN THE MYOCARDIUM | May 17, 2016 | Abandoned |
Array
(
[id] => 13589943
[patent_doc_number] => 20180346520
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-06
[patent_title] => METHODS AND COMPOSITIONS FOR INDUCING AN IMMUNE RESPONSE USING CONSERVED ELEMENT CONSTRUCTS
[patent_app_type] => utility
[patent_app_number] => 15/573701
[patent_app_country] => US
[patent_app_date] => 2016-05-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 25676
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -75
[patent_words_short_claim] => 36
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15573701
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/573701 | METHODS AND COMPOSITIONS FOR INDUCING AN IMMUNE RESPONSE USING CONSERVED ELEMENT CONSTRUCTS | May 12, 2016 | Abandoned |