
Jane J. Zara
Examiner (ID: 18595)
| Most Active Art Unit | 1635 |
| Art Unit(s) | 1674, 1637, 1635 |
| Total Applications | 1842 |
| Issued Applications | 1032 |
| Pending Applications | 285 |
| Abandoned Applications | 583 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 15039309
[patent_doc_number] => 20190330659
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-10-31
[patent_title] => SCARLESS DNA ASSEMBLY AND GENOME EDITING USING CRISPR/CPF1 AND DNA LIGASE
[patent_app_type] => utility
[patent_app_number] => 16/310895
[patent_app_country] => US
[patent_app_date] => 2017-07-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 20231
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16310895
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/310895 | SCARLESS DNA ASSEMBLY AND GENOME EDITING USING CRISPR/CPF1 AND DNA LIGASE | Jul 13, 2017 | Abandoned |
Array
(
[id] => 12791647
[patent_doc_number] => 20180155718
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-06-07
[patent_title] => RNA DUPLEXES WITH SINGLE STRANDED PHOSPHOROTHIOATE NUCLEOTIDE REGIONS FOR ADDITIONAL FUNCTIONALITY
[patent_app_type] => utility
[patent_app_number] => 15/638586
[patent_app_country] => US
[patent_app_date] => 2017-06-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 20888
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15638586
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/638586 | RNA duplexes with single stranded phosphorothioate nucleotide regions for additional functionality | Jun 29, 2017 | Issued |
Array
(
[id] => 12119153
[patent_doc_number] => 20180002740
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-01-04
[patent_title] => 'TRANSCRIPTION FACTOR DECOYS, COMPOSITIONS AND METHODS'
[patent_app_type] => utility
[patent_app_number] => 15/635801
[patent_app_country] => US
[patent_app_date] => 2017-06-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 30
[patent_figures_cnt] => 30
[patent_no_of_words] => 40222
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15635801
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/635801 | TRANSCRIPTION FACTOR DECOYS, COMPOSITIONS AND METHODS | Jun 27, 2017 | Abandoned |
Array
(
[id] => 14243859
[patent_doc_number] => 10272112
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-04-30
[patent_title] => Microsphere-based delivery and ex vivo manipulation of dendritic cells for autoimmune therapies
[patent_app_type] => utility
[patent_app_number] => 15/635007
[patent_app_country] => US
[patent_app_date] => 2017-06-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 49
[patent_figures_cnt] => 64
[patent_no_of_words] => 30470
[patent_no_of_claims] => 24
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 83
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15635007
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/635007 | Microsphere-based delivery and ex vivo manipulation of dendritic cells for autoimmune therapies | Jun 26, 2017 | Issued |
Array
(
[id] => 14948993
[patent_doc_number] => 10435757
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2019-10-08
[patent_title] => Methods of measuring C19MC miRNA in a post-natal tissue and uses thereof
[patent_app_type] => utility
[patent_app_number] => 15/623832
[patent_app_country] => US
[patent_app_date] => 2017-06-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 8429
[patent_no_of_claims] => 6
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 201
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15623832
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/623832 | Methods of measuring C19MC miRNA in a post-natal tissue and uses thereof | Jun 14, 2017 | Issued |
Array
(
[id] => 12751216
[patent_doc_number] => 20180142239
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-05-24
[patent_title] => METHODS AND COMPOSITIONS FOR THE TREATMENT OF CANCER OR OTHER DISEASES
[patent_app_type] => utility
[patent_app_number] => 15/623187
[patent_app_country] => US
[patent_app_date] => 2017-06-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 29572
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15623187
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/623187 | Methods and compositions for the treatment of cancer or other diseases | Jun 13, 2017 | Issued |
Array
(
[id] => 14439709
[patent_doc_number] => 20190177727
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-06-13
[patent_title] => METHODS FOR DIAGNOSING AND TREATING METASTATIC CANCER
[patent_app_type] => utility
[patent_app_number] => 16/309800
[patent_app_country] => US
[patent_app_date] => 2017-06-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10002
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16309800
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/309800 | Methods for diagnosing and treating metastatic cancer | Jun 13, 2017 | Issued |
Array
(
[id] => 13717851
[patent_doc_number] => 20170369880
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-12-28
[patent_title] => COMPOSITIONS COMPRISING ALTERNATING 2'-MODIFIED NUCLEOSIDES FOR USE IN GENE MODULATION
[patent_app_type] => utility
[patent_app_number] => 15/623193
[patent_app_country] => US
[patent_app_date] => 2017-06-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 44239
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -20
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15623193
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/623193 | Compositions comprising alternating 2'-modified nucleosides for use in gene modulation | Jun 13, 2017 | Issued |
Array
(
[id] => 17633926
[patent_doc_number] => 11344631
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-05-31
[patent_title] => Promoter for cell-specific gene expression and uses thereof
[patent_app_type] => utility
[patent_app_number] => 16/308446
[patent_app_country] => US
[patent_app_date] => 2017-06-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 9663
[patent_no_of_claims] => 5
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 24
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16308446
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/308446 | Promoter for cell-specific gene expression and uses thereof | Jun 11, 2017 | Issued |
Array
(
[id] => 12980614
[patent_doc_number] => 20170342413
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-11-30
[patent_title] => ANTISENSE DESIGN
[patent_app_type] => utility
[patent_app_number] => 15/619134
[patent_app_country] => US
[patent_app_date] => 2017-06-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15496
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15619134
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/619134 | Antisense design | Jun 8, 2017 | Issued |
Array
(
[id] => 17843795
[patent_doc_number] => 11433138
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-09-06
[patent_title] => Nanocarriers and intracellular delivery of same
[patent_app_type] => utility
[patent_app_number] => 16/306221
[patent_app_country] => US
[patent_app_date] => 2017-06-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 14
[patent_no_of_words] => 5869
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 74
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16306221
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/306221 | Nanocarriers and intracellular delivery of same | Jun 6, 2017 | Issued |
Array
(
[id] => 12928468
[patent_doc_number] => 09828606
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2017-11-28
[patent_title] => Methods and compositions for the specific inhibition of glycolate oxidase (HAO1) by double-stranded RNA
[patent_app_type] => utility
[patent_app_number] => 15/616254
[patent_app_country] => US
[patent_app_date] => 2017-06-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 77
[patent_figures_cnt] => 77
[patent_no_of_words] => 73847
[patent_no_of_claims] => 38
[patent_no_of_ind_claims] => 5
[patent_words_short_claim] => 61
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15616254
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/616254 | Methods and compositions for the specific inhibition of glycolate oxidase (HAO1) by double-stranded RNA | Jun 6, 2017 | Issued |
Array
(
[id] => 15363741
[patent_doc_number] => 20200017635
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-01-16
[patent_title] => FLUOROSURFACTANTS
[patent_app_type] => utility
[patent_app_number] => 16/303769
[patent_app_country] => US
[patent_app_date] => 2017-05-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15481
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -24
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16303769
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/303769 | Fluorosurfactants | May 25, 2017 | Issued |
Array
(
[id] => 12058980
[patent_doc_number] => 20170335325
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-11-23
[patent_title] => 'INHIBITORY OLIGONUCLEOTIDE AND USE THEREOF'
[patent_app_type] => utility
[patent_app_number] => 15/605488
[patent_app_country] => US
[patent_app_date] => 2017-05-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 10217
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15605488
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/605488 | Inhibitory oligonucleotide and use thereof | May 24, 2017 | Issued |
Array
(
[id] => 12058970
[patent_doc_number] => 20170335314
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-11-23
[patent_title] => 'Methods For Using Nucleic Acid Aptamers For Directed Templated Assembly'
[patent_app_type] => utility
[patent_app_number] => 15/601449
[patent_app_country] => US
[patent_app_date] => 2017-05-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 48
[patent_figures_cnt] => 48
[patent_no_of_words] => 23815
[patent_no_of_claims] => 32
[patent_no_of_ind_claims] => 7
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15601449
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/601449 | Methods For Using Nucleic Acid Aptamers For Directed Templated Assembly | May 21, 2017 | Abandoned |
Array
(
[id] => 11949728
[patent_doc_number] => 20170253879
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-09-07
[patent_title] => 'APTAMER-RNAi THERAPEUTIC COMPOSITIONS'
[patent_app_type] => utility
[patent_app_number] => 15/600575
[patent_app_country] => US
[patent_app_date] => 2017-05-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 15
[patent_figures_cnt] => 15
[patent_no_of_words] => 13787
[patent_no_of_claims] => 12
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15600575
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/600575 | APTAMER-RNAi THERAPEUTIC COMPOSITIONS | May 18, 2017 | Abandoned |
Array
(
[id] => 13729833
[patent_doc_number] => 20180369384
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-27
[patent_title] => COMPOSITIONS FOR NUCLEIC ACID DELIVERY
[patent_app_type] => utility
[patent_app_number] => 15/596845
[patent_app_country] => US
[patent_app_date] => 2017-05-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 54624
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15596845
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/596845 | COMPOSITIONS FOR NUCLEIC ACID DELIVERY | May 15, 2017 | Abandoned |
Array
(
[id] => 14231133
[patent_doc_number] => 20190127739
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-05-02
[patent_title] => SELF-ASSEMBLED 3D RNA CAGE NANOPARTICLES
[patent_app_type] => utility
[patent_app_number] => 16/091747
[patent_app_country] => US
[patent_app_date] => 2017-05-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 33841
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16091747
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/091747 | Self-assembled 3D RNA cage nanoparticles | May 9, 2017 | Issued |
Array
(
[id] => 15268071
[patent_doc_number] => 20190382769
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-12-19
[patent_title] => K-RAS GENE EXPRESSION-SUPPRESSING SIRNA, PRECURSOR OF SAME, AND APPLICATIONS THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/098960
[patent_app_country] => US
[patent_app_date] => 2017-05-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9012
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 97
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16098960
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/098960 | K-RAS gene expression-suppressing siRNA, precursor of same, and applications thereof | May 4, 2017 | Issued |
Array
(
[id] => 11866050
[patent_doc_number] => 20170233332
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-08-17
[patent_title] => 'COMPOUNDS AND COMPOSITIONS FOR INTRACELLULAR DELIVERY OF THERAPEUTIC AGENTS'
[patent_app_type] => utility
[patent_app_number] => 15/498698
[patent_app_country] => US
[patent_app_date] => 2017-04-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 11
[patent_no_of_words] => 92634
[patent_no_of_claims] => 30
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15498698
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/498698 | Compounds and compositions for intracellular delivery of therapeutic agents | Apr 26, 2017 | Issued |