Search

Jane J. Zara

Examiner (ID: 18595)

Most Active Art Unit
1635
Art Unit(s)
1674, 1637, 1635
Total Applications
1842
Issued Applications
1032
Pending Applications
285
Abandoned Applications
583

Applications

Application numberTitle of the applicationFiling DateStatus
Array ( [id] => 13865849 [patent_doc_number] => 20190029265 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2019-01-31 [patent_title] => Methods and Compositions for Controlling Ants [patent_app_type] => utility [patent_app_number] => 16/072159 [patent_app_country] => US [patent_app_date] => 2017-01-31 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 9689 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -26 [patent_words_short_claim] => 17 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16072159 [rel_patent_id] =>[rel_patent_doc_number] =>)
16/072159
Methods and Compositions for Controlling Ants Jan 30, 2017 Abandoned
Array ( [id] => 12022268 [patent_doc_number] => 20170312367 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-11-02 [patent_title] => 'BRANCHED OLIGONUCLEOTIDES' [patent_app_type] => utility [patent_app_number] => 15/419593 [patent_app_country] => US [patent_app_date] => 2017-01-30 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 53 [patent_figures_cnt] => 53 [patent_no_of_words] => 19628 [patent_no_of_claims] => 44 [patent_no_of_ind_claims] => 29 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15419593 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/419593
Branched oligonucleotides Jan 29, 2017 Issued
Array ( [id] => 18045052 [patent_doc_number] => 11518994 [patent_country] => US [patent_kind] => B2 [patent_issue_date] => 2022-12-06 [patent_title] => Artificial single guide RNA and use thereof [patent_app_type] => utility [patent_app_number] => 16/073998 [patent_app_country] => US [patent_app_date] => 2017-01-30 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 16 [patent_figures_cnt] => 16 [patent_no_of_words] => 23924 [patent_no_of_claims] => 21 [patent_no_of_ind_claims] => 1 [patent_words_short_claim] => 211 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => patent [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16073998 [rel_patent_id] =>[rel_patent_doc_number] =>)
16/073998
Artificial single guide RNA and use thereof Jan 29, 2017 Issued
Array ( [id] => 11837853 [patent_doc_number] => 20170219572 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-08-03 [patent_title] => 'LSPR-BASED HIGH SENSITIVITY APTAMER SENSOR USING INTERCALATION AGENT' [patent_app_type] => utility [patent_app_number] => 15/418100 [patent_app_country] => US [patent_app_date] => 2017-01-27 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 3 [patent_figures_cnt] => 3 [patent_no_of_words] => 3290 [patent_no_of_claims] => 6 [patent_no_of_ind_claims] => 1 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15418100 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/418100
LSPR-based high sensitivity aptamer sensor using intercalation agent Jan 26, 2017 Issued
Array ( [id] => 11994192 [patent_doc_number] => 20170298347 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-10-19 [patent_title] => 'NOVEL FUSION-CIRCULAR RNAs AND USES THEREOF' [patent_app_type] => utility [patent_app_number] => 15/417868 [patent_app_country] => US [patent_app_date] => 2017-01-27 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 53 [patent_figures_cnt] => 53 [patent_no_of_words] => 42421 [patent_no_of_claims] => 22 [patent_no_of_ind_claims] => 15 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15417868 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/417868
NOVEL FUSION-CIRCULAR RNAs AND USES THEREOF Jan 26, 2017 Abandoned
Array ( [id] => 13749069 [patent_doc_number] => 10167467 [patent_country] => US [patent_kind] => B2 [patent_issue_date] => 2019-01-01 [patent_title] => Compositions comprising eicosapentaenoic acid and mipomersen and methods of use thereof [patent_app_type] => utility [patent_app_number] => 15/410249 [patent_app_country] => US [patent_app_date] => 2017-01-19 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 22658 [patent_no_of_claims] => 8 [patent_no_of_ind_claims] => 1 [patent_words_short_claim] => 49 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => patent [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15410249 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/410249
Compositions comprising eicosapentaenoic acid and mipomersen and methods of use thereof Jan 18, 2017 Issued
Array ( [id] => 11568875 [patent_doc_number] => 20170107519 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-04-20 [patent_title] => 'METHOD FOR EXPRESSION OF SMALL ANTIVIRAL RNA MOLECULES WITH REDUCED CYTOTOXICITY WITHIN A CELL' [patent_app_type] => utility [patent_app_number] => 15/395348 [patent_app_country] => US [patent_app_date] => 2016-12-30 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 27 [patent_figures_cnt] => 27 [patent_no_of_words] => 22194 [patent_no_of_claims] => 21 [patent_no_of_ind_claims] => 2 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15395348 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/395348
Method for expression of small antiviral RNA molecules with reduced cytotoxicity within a cell Dec 29, 2016 Issued
Array ( [id] => 12388428 [patent_doc_number] => 09963717 [patent_country] => US [patent_kind] => B2 [patent_issue_date] => 2018-05-08 [patent_title] => Method for expression of small RNA molecules within a cell [patent_app_type] => utility [patent_app_number] => 15/391189 [patent_app_country] => US [patent_app_date] => 2016-12-27 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 7 [patent_figures_cnt] => 10 [patent_no_of_words] => 11559 [patent_no_of_claims] => 19 [patent_no_of_ind_claims] => 1 [patent_words_short_claim] => 95 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => patent [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15391189 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/391189
Method for expression of small RNA molecules within a cell Dec 26, 2016 Issued
Array ( [id] => 16985645 [patent_doc_number] => 11072803 [patent_country] => US [patent_kind] => B2 [patent_issue_date] => 2021-07-27 [patent_title] => Hybrid dual recombinant AAV vector systems for gene therapy [patent_app_type] => utility [patent_app_number] => 16/065145 [patent_app_country] => US [patent_app_date] => 2016-12-21 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 8 [patent_figures_cnt] => 11 [patent_no_of_words] => 8704 [patent_no_of_claims] => 20 [patent_no_of_ind_claims] => 1 [patent_words_short_claim] => 210 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => patent [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16065145 [rel_patent_id] =>[rel_patent_doc_number] =>)
16/065145
Hybrid dual recombinant AAV vector systems for gene therapy Dec 20, 2016 Issued
Array ( [id] => 12388377 [patent_doc_number] => 09963700 [patent_country] => US [patent_kind] => B2 [patent_issue_date] => 2018-05-08 [patent_title] => GNAQ targeted dsRNA compositions and methods for inhibiting expression [patent_app_type] => utility [patent_app_number] => 15/387470 [patent_app_country] => US [patent_app_date] => 2016-12-21 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 8 [patent_figures_cnt] => 8 [patent_no_of_words] => 38246 [patent_no_of_claims] => 24 [patent_no_of_ind_claims] => 1 [patent_words_short_claim] => 46 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => patent [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15387470 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/387470
GNAQ targeted dsRNA compositions and methods for inhibiting expression Dec 20, 2016 Issued
Array ( [id] => 11706624 [patent_doc_number] => 20170175124 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-06-22 [patent_title] => 'INDIVIDUALIZED CANCER THERAPY' [patent_app_type] => utility [patent_app_number] => 15/386633 [patent_app_country] => US [patent_app_date] => 2016-12-21 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 48 [patent_figures_cnt] => 48 [patent_no_of_words] => 19094 [patent_no_of_claims] => 25 [patent_no_of_ind_claims] => 3 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15386633 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/386633
INDIVIDUALIZED CANCER THERAPY Dec 20, 2016 Abandoned
Array ( [id] => 13729893 [patent_doc_number] => 20180369414 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2018-12-27 [patent_title] => MATERIALS AND METHODS FOR DELIVERING NUCLEIC ACIDS TO COCHLEAR AND VESTIBULAR CELLS [patent_app_type] => utility [patent_app_number] => 16/060841 [patent_app_country] => US [patent_app_date] => 2016-12-12 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 20808 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -20 [patent_words_short_claim] => 2 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16060841 [rel_patent_id] =>[rel_patent_doc_number] =>)
16/060841
Materials and methods for delivering nucleic acids to cochlear and vestibular cells Dec 11, 2016 Issued
Array ( [id] => 13622857 [patent_doc_number] => 20180362980 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2018-12-20 [patent_title] => EFFECTIVE GENE THERAPY TOOLS FOR DYSTROPHIN EXON 53 SKIPPING [patent_app_type] => utility [patent_app_number] => 16/060396 [patent_app_country] => US [patent_app_date] => 2016-12-09 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 16260 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -17 [patent_words_short_claim] => 40 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16060396 [rel_patent_id] =>[rel_patent_doc_number] =>)
16/060396
Effective gene therapy tools for dystrophin exon 53 skipping Dec 8, 2016 Issued
Array ( [id] => 16954882 [patent_doc_number] => 11058709 [patent_country] => US [patent_kind] => B1 [patent_issue_date] => 2021-07-13 [patent_title] => Methods of treating breast cancer [patent_app_type] => utility [patent_app_number] => 15/781249 [patent_app_country] => US [patent_app_date] => 2016-12-05 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 37115 [patent_no_of_claims] => 15 [patent_no_of_ind_claims] => 1 [patent_words_short_claim] => 58 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => patent [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15781249 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/781249
Methods of treating breast cancer Dec 4, 2016 Issued
Array ( [id] => 11836737 [patent_doc_number] => 20170218457 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-08-03 [patent_title] => 'MIR-193A-3P AND ASSOCIATED GENES PREDICT TUMORIGENESIS AND CHEMOTHERAPY OUTCOMES' [patent_app_type] => utility [patent_app_number] => 15/367947 [patent_app_country] => US [patent_app_date] => 2016-12-02 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 11 [patent_figures_cnt] => 11 [patent_no_of_words] => 20673 [patent_no_of_claims] => 8 [patent_no_of_ind_claims] => 3 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15367947 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/367947
miR-193a-3p and associated genes predict tumorigenesis and chemotherapy outcomes Dec 1, 2016 Issued
Array ( [id] => 11866456 [patent_doc_number] => 20170233741 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2017-08-17 [patent_title] => 'IMMUNE REGULATORY OLIGONUCLEOTIDE (IRO) COMPOUNDS TO MODULATE TOLL-LIKE RECEPTOR BASED IMMUNE RESPONSE' [patent_app_type] => utility [patent_app_number] => 15/366509 [patent_app_country] => US [patent_app_date] => 2016-12-01 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 13 [patent_figures_cnt] => 13 [patent_no_of_words] => 15237 [patent_no_of_claims] => 21 [patent_no_of_ind_claims] => 1 [patent_words_short_claim] => 0 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15366509 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/366509
IMMUNE REGULATORY OLIGONUCLEOTIDE (IRO) COMPOUNDS TO MODULATE TOLL-LIKE RECEPTOR BASED IMMUNE RESPONSE Nov 30, 2016 Abandoned
Array ( [id] => 13955695 [patent_doc_number] => 20190054191 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2019-02-21 [patent_title] => SYNP161, A PROMOTER FOR THE SPECIFIC EXPRESSION OF GENES IN ROD PHOTORECEPTORS [patent_app_type] => utility [patent_app_number] => 15/780567 [patent_app_country] => US [patent_app_date] => 2016-12-01 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 8412 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -10 [patent_words_short_claim] => 2 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15780567 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/780567
SynP161, a promoter for the specific expression of genes in rod photoreceptors Nov 30, 2016 Issued
Array ( [id] => 13929663 [patent_doc_number] => 20190048347 [patent_country] => US [patent_kind] => A1 [patent_issue_date] => 2019-02-14 [patent_title] => NUCLEIC ACID APTAMER AS1411 MODIFIED DNA TETRAHEDRON AND PREPARATION METHOD THEREOF [patent_app_type] => utility [patent_app_number] => 15/744849 [patent_app_country] => US [patent_app_date] => 2016-11-30 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 0 [patent_figures_cnt] => 0 [patent_no_of_words] => 2796 [patent_no_of_claims] => 0 [patent_no_of_ind_claims] => -6 [patent_words_short_claim] => 222 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => publication [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15744849 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/744849
Nucleic acid aptamer AS1411 modified DNA tetrahedron and preparation method thereof Nov 29, 2016 Issued
Array ( [id] => 19737245 [patent_doc_number] => 12214054 [patent_country] => US [patent_kind] => B2 [patent_issue_date] => 2025-02-04 [patent_title] => Therapeutic targets for the correction of the human dystrophin gene by gene editing and methods of use [patent_app_type] => utility [patent_app_number] => 15/779633 [patent_app_country] => US [patent_app_date] => 2016-11-30 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 39 [patent_figures_cnt] => 43 [patent_no_of_words] => 33491 [patent_no_of_claims] => 16 [patent_no_of_ind_claims] => 4 [patent_words_short_claim] => 657 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => patent [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15779633 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/779633
Therapeutic targets for the correction of the human dystrophin gene by gene editing and methods of use Nov 29, 2016 Issued
Array ( [id] => 13140249 [patent_doc_number] => 10087445 [patent_country] => US [patent_kind] => B2 [patent_issue_date] => 2018-10-02 [patent_title] => Modifications for antisense compounds [patent_app_type] => utility [patent_app_number] => 15/360382 [patent_app_country] => US [patent_app_date] => 2016-11-23 [patent_effective_date] => 0000-00-00 [patent_drawing_sheets_cnt] => 9 [patent_figures_cnt] => 9 [patent_no_of_words] => 13900 [patent_no_of_claims] => 10 [patent_no_of_ind_claims] => 1 [patent_words_short_claim] => 171 [patent_maintenance] => 1 [patent_no_of_assignments] => 0 [patent_current_assignee] =>[type] => patent [pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15360382 [rel_patent_id] =>[rel_patent_doc_number] =>)
15/360382
Modifications for antisense compounds Nov 22, 2016 Issued
Menu