
Jane J. Zara
Examiner (ID: 18595)
| Most Active Art Unit | 1635 |
| Art Unit(s) | 1674, 1637, 1635 |
| Total Applications | 1842 |
| Issued Applications | 1032 |
| Pending Applications | 285 |
| Abandoned Applications | 583 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 13865849
[patent_doc_number] => 20190029265
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-01-31
[patent_title] => Methods and Compositions for Controlling Ants
[patent_app_type] => utility
[patent_app_number] => 16/072159
[patent_app_country] => US
[patent_app_date] => 2017-01-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9689
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -26
[patent_words_short_claim] => 17
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16072159
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/072159 | Methods and Compositions for Controlling Ants | Jan 30, 2017 | Abandoned |
Array
(
[id] => 12022268
[patent_doc_number] => 20170312367
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-11-02
[patent_title] => 'BRANCHED OLIGONUCLEOTIDES'
[patent_app_type] => utility
[patent_app_number] => 15/419593
[patent_app_country] => US
[patent_app_date] => 2017-01-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 53
[patent_figures_cnt] => 53
[patent_no_of_words] => 19628
[patent_no_of_claims] => 44
[patent_no_of_ind_claims] => 29
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15419593
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/419593 | Branched oligonucleotides | Jan 29, 2017 | Issued |
Array
(
[id] => 18045052
[patent_doc_number] => 11518994
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-12-06
[patent_title] => Artificial single guide RNA and use thereof
[patent_app_type] => utility
[patent_app_number] => 16/073998
[patent_app_country] => US
[patent_app_date] => 2017-01-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 16
[patent_figures_cnt] => 16
[patent_no_of_words] => 23924
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 211
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16073998
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/073998 | Artificial single guide RNA and use thereof | Jan 29, 2017 | Issued |
Array
(
[id] => 11837853
[patent_doc_number] => 20170219572
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-08-03
[patent_title] => 'LSPR-BASED HIGH SENSITIVITY APTAMER SENSOR USING INTERCALATION AGENT'
[patent_app_type] => utility
[patent_app_number] => 15/418100
[patent_app_country] => US
[patent_app_date] => 2017-01-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 3
[patent_no_of_words] => 3290
[patent_no_of_claims] => 6
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15418100
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/418100 | LSPR-based high sensitivity aptamer sensor using intercalation agent | Jan 26, 2017 | Issued |
Array
(
[id] => 11994192
[patent_doc_number] => 20170298347
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-10-19
[patent_title] => 'NOVEL FUSION-CIRCULAR RNAs AND USES THEREOF'
[patent_app_type] => utility
[patent_app_number] => 15/417868
[patent_app_country] => US
[patent_app_date] => 2017-01-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 53
[patent_figures_cnt] => 53
[patent_no_of_words] => 42421
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 15
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15417868
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/417868 | NOVEL FUSION-CIRCULAR RNAs AND USES THEREOF | Jan 26, 2017 | Abandoned |
Array
(
[id] => 13749069
[patent_doc_number] => 10167467
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-01-01
[patent_title] => Compositions comprising eicosapentaenoic acid and mipomersen and methods of use thereof
[patent_app_type] => utility
[patent_app_number] => 15/410249
[patent_app_country] => US
[patent_app_date] => 2017-01-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22658
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 49
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15410249
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/410249 | Compositions comprising eicosapentaenoic acid and mipomersen and methods of use thereof | Jan 18, 2017 | Issued |
Array
(
[id] => 11568875
[patent_doc_number] => 20170107519
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-04-20
[patent_title] => 'METHOD FOR EXPRESSION OF SMALL ANTIVIRAL RNA MOLECULES WITH REDUCED CYTOTOXICITY WITHIN A CELL'
[patent_app_type] => utility
[patent_app_number] => 15/395348
[patent_app_country] => US
[patent_app_date] => 2016-12-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 27
[patent_figures_cnt] => 27
[patent_no_of_words] => 22194
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15395348
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/395348 | Method for expression of small antiviral RNA molecules with reduced cytotoxicity within a cell | Dec 29, 2016 | Issued |
Array
(
[id] => 12388428
[patent_doc_number] => 09963717
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2018-05-08
[patent_title] => Method for expression of small RNA molecules within a cell
[patent_app_type] => utility
[patent_app_number] => 15/391189
[patent_app_country] => US
[patent_app_date] => 2016-12-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 10
[patent_no_of_words] => 11559
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 95
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15391189
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/391189 | Method for expression of small RNA molecules within a cell | Dec 26, 2016 | Issued |
Array
(
[id] => 16985645
[patent_doc_number] => 11072803
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-07-27
[patent_title] => Hybrid dual recombinant AAV vector systems for gene therapy
[patent_app_type] => utility
[patent_app_number] => 16/065145
[patent_app_country] => US
[patent_app_date] => 2016-12-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 11
[patent_no_of_words] => 8704
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 210
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16065145
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/065145 | Hybrid dual recombinant AAV vector systems for gene therapy | Dec 20, 2016 | Issued |
Array
(
[id] => 12388377
[patent_doc_number] => 09963700
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2018-05-08
[patent_title] => GNAQ targeted dsRNA compositions and methods for inhibiting expression
[patent_app_type] => utility
[patent_app_number] => 15/387470
[patent_app_country] => US
[patent_app_date] => 2016-12-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 38246
[patent_no_of_claims] => 24
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 46
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15387470
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/387470 | GNAQ targeted dsRNA compositions and methods for inhibiting expression | Dec 20, 2016 | Issued |
Array
(
[id] => 11706624
[patent_doc_number] => 20170175124
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-06-22
[patent_title] => 'INDIVIDUALIZED CANCER THERAPY'
[patent_app_type] => utility
[patent_app_number] => 15/386633
[patent_app_country] => US
[patent_app_date] => 2016-12-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 48
[patent_figures_cnt] => 48
[patent_no_of_words] => 19094
[patent_no_of_claims] => 25
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15386633
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/386633 | INDIVIDUALIZED CANCER THERAPY | Dec 20, 2016 | Abandoned |
Array
(
[id] => 13729893
[patent_doc_number] => 20180369414
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-27
[patent_title] => MATERIALS AND METHODS FOR DELIVERING NUCLEIC ACIDS TO COCHLEAR AND VESTIBULAR CELLS
[patent_app_type] => utility
[patent_app_number] => 16/060841
[patent_app_country] => US
[patent_app_date] => 2016-12-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 20808
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -20
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16060841
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/060841 | Materials and methods for delivering nucleic acids to cochlear and vestibular cells | Dec 11, 2016 | Issued |
Array
(
[id] => 13622857
[patent_doc_number] => 20180362980
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-20
[patent_title] => EFFECTIVE GENE THERAPY TOOLS FOR DYSTROPHIN EXON 53 SKIPPING
[patent_app_type] => utility
[patent_app_number] => 16/060396
[patent_app_country] => US
[patent_app_date] => 2016-12-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16260
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 40
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16060396
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/060396 | Effective gene therapy tools for dystrophin exon 53 skipping | Dec 8, 2016 | Issued |
Array
(
[id] => 16954882
[patent_doc_number] => 11058709
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2021-07-13
[patent_title] => Methods of treating breast cancer
[patent_app_type] => utility
[patent_app_number] => 15/781249
[patent_app_country] => US
[patent_app_date] => 2016-12-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 37115
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 58
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15781249
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/781249 | Methods of treating breast cancer | Dec 4, 2016 | Issued |
Array
(
[id] => 11836737
[patent_doc_number] => 20170218457
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-08-03
[patent_title] => 'MIR-193A-3P AND ASSOCIATED GENES PREDICT TUMORIGENESIS AND CHEMOTHERAPY OUTCOMES'
[patent_app_type] => utility
[patent_app_number] => 15/367947
[patent_app_country] => US
[patent_app_date] => 2016-12-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 11
[patent_no_of_words] => 20673
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15367947
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/367947 | miR-193a-3p and associated genes predict tumorigenesis and chemotherapy outcomes | Dec 1, 2016 | Issued |
Array
(
[id] => 11866456
[patent_doc_number] => 20170233741
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-08-17
[patent_title] => 'IMMUNE REGULATORY OLIGONUCLEOTIDE (IRO) COMPOUNDS TO MODULATE TOLL-LIKE RECEPTOR BASED IMMUNE RESPONSE'
[patent_app_type] => utility
[patent_app_number] => 15/366509
[patent_app_country] => US
[patent_app_date] => 2016-12-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 13
[patent_no_of_words] => 15237
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15366509
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/366509 | IMMUNE REGULATORY OLIGONUCLEOTIDE (IRO) COMPOUNDS TO MODULATE TOLL-LIKE RECEPTOR BASED IMMUNE RESPONSE | Nov 30, 2016 | Abandoned |
Array
(
[id] => 13955695
[patent_doc_number] => 20190054191
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-02-21
[patent_title] => SYNP161, A PROMOTER FOR THE SPECIFIC EXPRESSION OF GENES IN ROD PHOTORECEPTORS
[patent_app_type] => utility
[patent_app_number] => 15/780567
[patent_app_country] => US
[patent_app_date] => 2016-12-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8412
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15780567
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/780567 | SynP161, a promoter for the specific expression of genes in rod photoreceptors | Nov 30, 2016 | Issued |
Array
(
[id] => 13929663
[patent_doc_number] => 20190048347
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-02-14
[patent_title] => NUCLEIC ACID APTAMER AS1411 MODIFIED DNA TETRAHEDRON AND PREPARATION METHOD THEREOF
[patent_app_type] => utility
[patent_app_number] => 15/744849
[patent_app_country] => US
[patent_app_date] => 2016-11-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 2796
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -6
[patent_words_short_claim] => 222
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15744849
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/744849 | Nucleic acid aptamer AS1411 modified DNA tetrahedron and preparation method thereof | Nov 29, 2016 | Issued |
Array
(
[id] => 19737245
[patent_doc_number] => 12214054
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-02-04
[patent_title] => Therapeutic targets for the correction of the human dystrophin gene by gene editing and methods of use
[patent_app_type] => utility
[patent_app_number] => 15/779633
[patent_app_country] => US
[patent_app_date] => 2016-11-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 39
[patent_figures_cnt] => 43
[patent_no_of_words] => 33491
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 657
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15779633
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/779633 | Therapeutic targets for the correction of the human dystrophin gene by gene editing and methods of use | Nov 29, 2016 | Issued |
Array
(
[id] => 13140249
[patent_doc_number] => 10087445
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2018-10-02
[patent_title] => Modifications for antisense compounds
[patent_app_type] => utility
[patent_app_number] => 15/360382
[patent_app_country] => US
[patent_app_date] => 2016-11-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 13900
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 171
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15360382
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/360382 | Modifications for antisense compounds | Nov 22, 2016 | Issued |