
Jane J. Zara
Examiner (ID: 18595)
| Most Active Art Unit | 1635 |
| Art Unit(s) | 1674, 1637, 1635 |
| Total Applications | 1842 |
| Issued Applications | 1032 |
| Pending Applications | 285 |
| Abandoned Applications | 583 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 10202560
[patent_doc_number] => 20150087549
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-03-26
[patent_title] => 'METHODS OF USING TISSUE BIOMARKERS FOR INDICATION OF PROGRESSION FROM BARRETTS ESOPHAGUS TO ESOPHAGEAL ADENOCARCINOMA'
[patent_app_type] => utility
[patent_app_number] => 14/552132
[patent_app_country] => US
[patent_app_date] => 2014-11-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 12367
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14552132
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/552132 | METHODS OF USING TISSUE BIOMARKERS FOR INDICATION OF PROGRESSION FROM BARRETTS ESOPHAGUS TO ESOPHAGEAL ADENOCARCINOMA | Nov 23, 2014 | Abandoned |
Array
(
[id] => 11779314
[patent_doc_number] => 09388414
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2016-07-12
[patent_title] => 'Method for selectively inhibiting ACAT1 in the treatment of neurodegenerative diseases'
[patent_app_type] => utility
[patent_app_number] => 14/550025
[patent_app_country] => US
[patent_app_date] => 2014-11-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 6
[patent_no_of_words] => 22899
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 51
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14550025
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/550025 | Method for selectively inhibiting ACAT1 in the treatment of neurodegenerative diseases | Nov 20, 2014 | Issued |
Array
(
[id] => 11231236
[patent_doc_number] => 09458459
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2016-10-04
[patent_title] => 'Methods for enhancing utrophin production via inhibition of microRNA'
[patent_app_type] => utility
[patent_app_number] => 14/547795
[patent_app_country] => US
[patent_app_date] => 2014-11-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 14
[patent_figures_cnt] => 19
[patent_no_of_words] => 9162
[patent_no_of_claims] => 24
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 118
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14547795
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/547795 | Methods for enhancing utrophin production via inhibition of microRNA | Nov 18, 2014 | Issued |
Array
(
[id] => 11827636
[patent_doc_number] => 09724365
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2017-08-08
[patent_title] => 'Microsphere-based delivery and ex vivo manipulation of dendritic cells for autoimmune therapies'
[patent_app_type] => utility
[patent_app_number] => 14/546755
[patent_app_country] => US
[patent_app_date] => 2014-11-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 49
[patent_figures_cnt] => 64
[patent_no_of_words] => 34147
[patent_no_of_claims] => 23
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 78
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14546755
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/546755 | Microsphere-based delivery and ex vivo manipulation of dendritic cells for autoimmune therapies | Nov 17, 2014 | Issued |
Array
(
[id] => 11344587
[patent_doc_number] => 09528991
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2016-12-27
[patent_title] => 'Individualized cancer therapy'
[patent_app_type] => utility
[patent_app_number] => 14/535789
[patent_app_country] => US
[patent_app_date] => 2014-11-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 48
[patent_figures_cnt] => 58
[patent_no_of_words] => 18854
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 148
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14535789
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/535789 | Individualized cancer therapy | Nov 6, 2014 | Issued |
Array
(
[id] => 15980581
[patent_doc_number] => 10670611
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-06-02
[patent_title] => Cardiovascular risk event prediction and uses thereof
[patent_app_type] => utility
[patent_app_number] => 15/509665
[patent_app_country] => US
[patent_app_date] => 2014-11-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 25
[patent_figures_cnt] => 23
[patent_no_of_words] => 35590
[patent_no_of_claims] => 27
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 104
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15509665
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/509665 | Cardiovascular risk event prediction and uses thereof | Nov 2, 2014 | Issued |
Array
(
[id] => 10362141
[patent_doc_number] => 20150247147
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-09-03
[patent_title] => 'MODULATORS OF COAGULATION FACTORS'
[patent_app_type] => utility
[patent_app_number] => 14/508609
[patent_app_country] => US
[patent_app_date] => 2014-10-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 21
[patent_figures_cnt] => 21
[patent_no_of_words] => 23663
[patent_no_of_claims] => 7
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14508609
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/508609 | MODULATORS OF COAGULATION FACTORS | Oct 6, 2014 | Abandoned |
Array
(
[id] => 11427995
[patent_doc_number] => 09566295
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2017-02-14
[patent_title] => 'GNAQ targeted dsRNA compositions and methods for inhibiting expression'
[patent_app_type] => utility
[patent_app_number] => 14/507086
[patent_app_country] => US
[patent_app_date] => 2014-10-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 45126
[patent_no_of_claims] => 25
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 44
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14507086
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/507086 | GNAQ targeted dsRNA compositions and methods for inhibiting expression | Oct 5, 2014 | Issued |
Array
(
[id] => 13209563
[patent_doc_number] => 10119143
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2018-11-06
[patent_title] => Compositions and methods for inhibiting expression of the ALAS1 gene
[patent_app_type] => utility
[patent_app_number] => 15/027176
[patent_app_country] => US
[patent_app_date] => 2014-10-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 61
[patent_figures_cnt] => 61
[patent_no_of_words] => 87876
[patent_no_of_claims] => 78
[patent_no_of_ind_claims] => 5
[patent_words_short_claim] => 80
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15027176
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/027176 | Compositions and methods for inhibiting expression of the ALAS1 gene | Oct 2, 2014 | Issued |
Array
(
[id] => 9799800
[patent_doc_number] => 20150011744
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-01-08
[patent_title] => 'Modifications for Antisense Compounds'
[patent_app_type] => utility
[patent_app_number] => 14/281646
[patent_app_country] => US
[patent_app_date] => 2014-09-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 16746
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14281646
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/281646 | Modifications for antisense compounds | Sep 25, 2014 | Issued |
Array
(
[id] => 10220453
[patent_doc_number] => 20150105447
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-04-16
[patent_title] => 'FIDGETIN-LIKE 2 AS A TARGET TO ENHANCE WOUND HEALING'
[patent_app_type] => utility
[patent_app_number] => 14/487221
[patent_app_country] => US
[patent_app_date] => 2014-09-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 13
[patent_no_of_words] => 7331
[patent_no_of_claims] => 3
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14487221
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/487221 | Fidgetin-like 2 as a target to enhance wound healing | Sep 15, 2014 | Issued |
Array
(
[id] => 10522914
[patent_doc_number] => 09249414
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2016-02-02
[patent_title] => 'Oligonucleotide compounds comprising non-nucleotide overhangs'
[patent_app_type] => utility
[patent_app_number] => 14/485828
[patent_app_country] => US
[patent_app_date] => 2014-09-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 25
[patent_no_of_words] => 42893
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 39
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14485828
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/485828 | Oligonucleotide compounds comprising non-nucleotide overhangs | Sep 14, 2014 | Issued |
Array
(
[id] => 9909508
[patent_doc_number] => 20150064709
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-03-05
[patent_title] => 'MODULATING GENE EXPRESSION WITH agRNA AND GAPMERS TARGETING ANTISENSE TRANSCRIPTS'
[patent_app_type] => utility
[patent_app_number] => 14/482950
[patent_app_country] => US
[patent_app_date] => 2014-09-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8273
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14482950
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/482950 | MODULATING GENE EXPRESSION WITH agRNA AND GAPMERS TARGETING ANTISENSE TRANSCRIPTS | Sep 9, 2014 | Abandoned |
Array
(
[id] => 15666917
[patent_doc_number] => 10597679
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-03-24
[patent_title] => Switchable Cas9 nucleases and uses thereof
[patent_app_type] => utility
[patent_app_number] => 14/916683
[patent_app_country] => US
[patent_app_date] => 2014-09-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 15817
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 34
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14916683
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/916683 | Switchable Cas9 nucleases and uses thereof | Sep 4, 2014 | Issued |
Array
(
[id] => 11888258
[patent_doc_number] => 09758811
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2017-09-12
[patent_title] => 'Use of aptamers in proteomics'
[patent_app_type] => utility
[patent_app_number] => 14/477907
[patent_app_country] => US
[patent_app_date] => 2014-09-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 8806
[patent_no_of_claims] => 26
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 111
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14477907
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/477907 | Use of aptamers in proteomics | Sep 4, 2014 | Issued |
Array
(
[id] => 10997423
[patent_doc_number] => 20160194368
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-07-07
[patent_title] => 'CIRCULAR POLYNUCLEOTIDES'
[patent_app_type] => utility
[patent_app_number] => 14/915945
[patent_app_country] => US
[patent_app_date] => 2014-09-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 153387
[patent_no_of_claims] => 58
[patent_no_of_ind_claims] => 7
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14915945
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/915945 | CIRCULAR POLYNUCLEOTIDES | Sep 2, 2014 | Abandoned |
Array
(
[id] => 10331888
[patent_doc_number] => 20150216893
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-08-06
[patent_title] => 'METHODS AND COMPOSITIONS FOR INHIBITING A MULTI-CANCER MESENCHYMAL TRANSITION MECHANISM'
[patent_app_type] => utility
[patent_app_number] => 14/458714
[patent_app_country] => US
[patent_app_date] => 2014-08-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 13990
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14458714
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/458714 | METHODS AND COMPOSITIONS FOR INHIBITING A MULTI-CANCER MESENCHYMAL TRANSITION MECHANISM | Aug 12, 2014 | Abandoned |
Array
(
[id] => 11902894
[patent_doc_number] => 09772324
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2017-09-26
[patent_title] => 'Use of inhibitors of leukotriene B4 receptor BLT2 for treating asthma'
[patent_app_type] => utility
[patent_app_number] => 14/446298
[patent_app_country] => US
[patent_app_date] => 2014-07-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 32
[patent_figures_cnt] => 44
[patent_no_of_words] => 22722
[patent_no_of_claims] => 1
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 88
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14446298
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/446298 | Use of inhibitors of leukotriene B4 receptor BLT2 for treating asthma | Jul 28, 2014 | Issued |
Array
(
[id] => 10926869
[patent_doc_number] => 20140329887
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2014-11-06
[patent_title] => 'MICRORNA COMPOUNDS AND METHODS FOR MODULATING MIR-21 ACTIVITY'
[patent_app_type] => utility
[patent_app_number] => 14/444406
[patent_app_country] => US
[patent_app_date] => 2014-07-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 2
[patent_figures_cnt] => 2
[patent_no_of_words] => 41645
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14444406
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/444406 | MicroRNA compounds and methods for modulating miR-21 activity | Jul 27, 2014 | Issued |
Array
(
[id] => 10613828
[patent_doc_number] => 09333254
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2016-05-10
[patent_title] => 'Long term disease modification using immunostimulatory oligonucleotides'
[patent_app_type] => utility
[patent_app_number] => 14/335790
[patent_app_country] => US
[patent_app_date] => 2014-07-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 10
[patent_no_of_words] => 28957
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 186
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14335790
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/335790 | Long term disease modification using immunostimulatory oligonucleotides | Jul 17, 2014 | Issued |