
Jeffrey S. Parkin
Examiner (ID: 6020, Phone: (571)272-0908 , Office: P/1648 )
| Most Active Art Unit | 1648 |
| Art Unit(s) | 1671, 1648, 1641, 1813 |
| Total Applications | 1732 |
| Issued Applications | 938 |
| Pending Applications | 260 |
| Abandoned Applications | 572 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 20421274
[patent_doc_number] => 20250383359
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2025-12-18
[patent_title] => COVID-19 Mucosal Antibody Assay
[patent_app_type] => utility
[patent_app_number] => 18/005332
[patent_app_country] => US
[patent_app_date] => 2021-06-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 1172
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18005332
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/005332 | COVID-19 Mucosal Antibody Assay | Jun 2, 2021 | Pending |
Array
(
[id] => 18497805
[patent_doc_number] => 20230220497
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-07-13
[patent_title] => NUCLEIC ACID AMPLIFICATION ASSAY USING 3-D MAGNETIC RESONANCE IMAGING DETECTION FOR SCREENING LARGE POPULATIONS
[patent_app_type] => utility
[patent_app_number] => 17/925308
[patent_app_country] => US
[patent_app_date] => 2021-05-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 21217
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17925308
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/925308 | NUCLEIC ACID AMPLIFICATION ASSAY USING 3-D MAGNETIC RESONANCE IMAGING DETECTION FOR SCREENING LARGE POPULATIONS | May 15, 2021 | Pending |
Array
(
[id] => 18497805
[patent_doc_number] => 20230220497
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-07-13
[patent_title] => NUCLEIC ACID AMPLIFICATION ASSAY USING 3-D MAGNETIC RESONANCE IMAGING DETECTION FOR SCREENING LARGE POPULATIONS
[patent_app_type] => utility
[patent_app_number] => 17/925308
[patent_app_country] => US
[patent_app_date] => 2021-05-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 21217
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17925308
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/925308 | NUCLEIC ACID AMPLIFICATION ASSAY USING 3-D MAGNETIC RESONANCE IMAGING DETECTION FOR SCREENING LARGE POPULATIONS | May 15, 2021 | Pending |
Array
(
[id] => 17214491
[patent_doc_number] => 20210347828
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-11-11
[patent_title] => RNA Replicon Encoding a Stabilized Corona Virus Spike Protein
[patent_app_type] => utility
[patent_app_number] => 17/317322
[patent_app_country] => US
[patent_app_date] => 2021-05-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22221
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -41
[patent_words_short_claim] => 147
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17317322
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/317322 | RNA Replicon Encoding a Stabilized Corona Virus Spike Protein | May 10, 2021 | Abandoned |
Array
(
[id] => 19677081
[patent_doc_number] => 12188935
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-01-07
[patent_title] => Method for the evaluation of antiretroviral therapy (ART) effectiveness in HIV-1 CD4+CD89+ cellular reservoirs
[patent_app_type] => utility
[patent_app_number] => 17/314255
[patent_app_country] => US
[patent_app_date] => 2021-05-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 31
[patent_no_of_words] => 12664
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 196
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17314255
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/314255 | Method for the evaluation of antiretroviral therapy (ART) effectiveness in HIV-1 CD4+CD89+ cellular reservoirs | May 6, 2021 | Issued |
Array
(
[id] => 18673107
[patent_doc_number] => 20230310583
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-10-05
[patent_title] => RECOMBINANT NEWCASTLE DISEASE VIRUS EXPRESSING SARS-COV-2 SPIKE PROTEIN AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/922777
[patent_app_country] => US
[patent_app_date] => 2021-05-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 76174
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -43
[patent_words_short_claim] => 17
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17922777
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/922777 | RECOMBINANT NEWCASTLE DISEASE VIRUS EXPRESSING SARS-COV-2 SPIKE PROTEIN AND USES THEREOF | May 5, 2021 | Pending |
Array
(
[id] => 18673107
[patent_doc_number] => 20230310583
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-10-05
[patent_title] => RECOMBINANT NEWCASTLE DISEASE VIRUS EXPRESSING SARS-COV-2 SPIKE PROTEIN AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/922777
[patent_app_country] => US
[patent_app_date] => 2021-05-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 76174
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -43
[patent_words_short_claim] => 17
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17922777
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/922777 | RECOMBINANT NEWCASTLE DISEASE VIRUS EXPRESSING SARS-COV-2 SPIKE PROTEIN AND USES THEREOF | May 5, 2021 | Pending |
Array
(
[id] => 18406160
[patent_doc_number] => 20230167511
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-01
[patent_title] => AN ULTRASENSITIVE RAPID AND PORTABLE CASE13D-BASED DIAGNOSTIC ASSAY
[patent_app_type] => utility
[patent_app_number] => 17/922860
[patent_app_country] => US
[patent_app_date] => 2021-05-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 43574
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17922860
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/922860 | AN ULTRASENSITIVE RAPID AND PORTABLE CASE13D-BASED DIAGNOSTIC ASSAY | May 4, 2021 | Pending |
Array
(
[id] => 19013011
[patent_doc_number] => 11919926
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-03-05
[patent_title] => Method of treating HIV-1 infection utilizing a multiepitope T cell immunogen comprising Gag, Pol, Vif, and Nef epitopes
[patent_app_type] => utility
[patent_app_number] => 17/244042
[patent_app_country] => US
[patent_app_date] => 2021-04-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 17
[patent_no_of_words] => 15679
[patent_no_of_claims] => 46
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 22
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17244042
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/244042 | Method of treating HIV-1 infection utilizing a multiepitope T cell immunogen comprising Gag, Pol, Vif, and Nef epitopes | Apr 28, 2021 | Issued |
Array
(
[id] => 18391805
[patent_doc_number] => 20230160023
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-05-25
[patent_title] => RNA VIRUS DETECTION METHOD
[patent_app_type] => utility
[patent_app_number] => 17/921451
[patent_app_country] => US
[patent_app_date] => 2021-04-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7735
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -6
[patent_words_short_claim] => 58
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17921451
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/921451 | RNA VIRUS DETECTION METHOD | Apr 27, 2021 | Pending |
Array
(
[id] => 18391805
[patent_doc_number] => 20230160023
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-05-25
[patent_title] => RNA VIRUS DETECTION METHOD
[patent_app_type] => utility
[patent_app_number] => 17/921451
[patent_app_country] => US
[patent_app_date] => 2021-04-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7735
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -6
[patent_words_short_claim] => 58
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17921451
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/921451 | RNA VIRUS DETECTION METHOD | Apr 27, 2021 | Pending |
Array
(
[id] => 18406163
[patent_doc_number] => 20230167514
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-01
[patent_title] => METHOD FOR DETECTING HBV GENOTYPE, OLIGONUCLEOTIDE AND KIT
[patent_app_type] => utility
[patent_app_number] => 17/997009
[patent_app_country] => US
[patent_app_date] => 2021-04-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5880
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 95
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17997009
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/997009 | METHOD FOR DETECTING HBV GENOTYPE, OLIGONUCLEOTIDE AND KIT | Apr 22, 2021 | Pending |
Array
(
[id] => 18406163
[patent_doc_number] => 20230167514
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-01
[patent_title] => METHOD FOR DETECTING HBV GENOTYPE, OLIGONUCLEOTIDE AND KIT
[patent_app_type] => utility
[patent_app_number] => 17/997009
[patent_app_country] => US
[patent_app_date] => 2021-04-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5880
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 95
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17997009
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/997009 | METHOD FOR DETECTING HBV GENOTYPE, OLIGONUCLEOTIDE AND KIT | Apr 22, 2021 | Pending |
Array
(
[id] => 19903118
[patent_doc_number] => 12280102
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-04-22
[patent_title] => Alphavirus replicon encoding chimeric SARS-CoV-2 receptor binding domains
[patent_app_type] => utility
[patent_app_number] => 17/232666
[patent_app_country] => US
[patent_app_date] => 2021-04-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 12
[patent_no_of_words] => 4117
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 66
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17232666
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/232666 | Alphavirus replicon encoding chimeric SARS-CoV-2 receptor binding domains | Apr 15, 2021 | Issued |
Array
(
[id] => 18529959
[patent_doc_number] => 20230235026
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-07-27
[patent_title] => INFECTIOUS DISEASE ANTIBODIES AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/918966
[patent_app_country] => US
[patent_app_date] => 2021-04-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19903
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17918966
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/918966 | INFECTIOUS DISEASE ANTIBODIES AND USES THEREOF | Apr 12, 2021 | Pending |
Array
(
[id] => 18628196
[patent_doc_number] => 20230287045
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-09-14
[patent_title] => METHODS FOR ASSEMBLING PEPTIDES INTO PEPTIDE AMPHIPHILE NANOFIBERS
[patent_app_type] => utility
[patent_app_number] => 17/995784
[patent_app_country] => US
[patent_app_date] => 2021-04-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16383
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17995784
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/995784 | METHODS FOR ASSEMBLING PEPTIDES INTO PEPTIDE AMPHIPHILE NANOFIBERS | Apr 7, 2021 | Pending |
Array
(
[id] => 18344418
[patent_doc_number] => 20230132528
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-05-04
[patent_title] => GENOME INTEGRITY ANALYSIS OF VIRUS VECTORS
[patent_app_type] => utility
[patent_app_number] => 17/916647
[patent_app_country] => US
[patent_app_date] => 2021-04-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4701
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 57
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17916647
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/916647 | GENOME INTEGRITY ANALYSIS OF VIRUS VECTORS | Apr 5, 2021 | Issued |
Array
(
[id] => 18344418
[patent_doc_number] => 20230132528
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-05-04
[patent_title] => GENOME INTEGRITY ANALYSIS OF VIRUS VECTORS
[patent_app_type] => utility
[patent_app_number] => 17/916647
[patent_app_country] => US
[patent_app_date] => 2021-04-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4701
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 57
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17916647
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/916647 | GENOME INTEGRITY ANALYSIS OF VIRUS VECTORS | Apr 5, 2021 | Issued |
Array
(
[id] => 16942199
[patent_doc_number] => 11054429
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2021-07-06
[patent_title] => SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein binding
[patent_app_type] => utility
[patent_app_number] => 17/220043
[patent_app_country] => US
[patent_app_date] => 2021-04-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 30
[patent_no_of_words] => 20421
[patent_no_of_claims] => 26
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 188
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17220043
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/220043 | SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein binding | Mar 31, 2021 | Issued |
Array
(
[id] => 18376358
[patent_doc_number] => 20230151442
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-05-18
[patent_title] => RAPID DETECTION OF VIRAL INFECTION USING RT-PCR
[patent_app_type] => utility
[patent_app_number] => 17/917512
[patent_app_country] => US
[patent_app_date] => 2021-04-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11344
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17917512
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/917512 | RAPID DETECTION OF VIRAL INFECTION USING RT-PCR | Mar 31, 2021 | Pending |