
Jennifer Castriotta
Examiner (ID: 2648, Phone: (571)270-5279 , Office: P/3781 )
| Most Active Art Unit | 3733 |
| Art Unit(s) | 3781, 3733 |
| Total Applications | 769 |
| Issued Applications | 457 |
| Pending Applications | 68 |
| Abandoned Applications | 260 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 15264915
[patent_doc_number] => 20190381191
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-12-19
[patent_title] => METHOD OF GENE TRANSFER FOR THE TREATMENT OF RECESSIVE CATECHOLAMINERGIC POLYMORPHIC VENTRICULAR TACHYCARDIA (CPVT)
[patent_app_type] => utility
[patent_app_number] => 16/258908
[patent_app_country] => US
[patent_app_date] => 2019-01-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4304
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -4
[patent_words_short_claim] => 72
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16258908
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/258908 | Method of gene transfer for the treatment of recessive catecholaminergic polymorphic ventricular tachycardia (CPVT) | Jan 27, 2019 | Issued |
Array
(
[id] => 14578737
[patent_doc_number] => 20190216977
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-07-18
[patent_title] => NERVE TREATMENT DEVICES AND METHODS
[patent_app_type] => utility
[patent_app_number] => 16/256147
[patent_app_country] => US
[patent_app_date] => 2019-01-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6605
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -20
[patent_words_short_claim] => 69
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16256147
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/256147 | NERVE TREATMENT DEVICES AND METHODS | Jan 23, 2019 | Abandoned |
Array
(
[id] => 16688671
[patent_doc_number] => 20210071147
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-03-11
[patent_title] => SCAFFOLDING MATERIAL FOR STEM CELL CULTURES AND STEM CELL CULTURE METHOD USING SAME
[patent_app_type] => utility
[patent_app_number] => 16/958218
[patent_app_country] => US
[patent_app_date] => 2018-12-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7930
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -3
[patent_words_short_claim] => 69
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16958218
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/958218 | Scaffolding material for stem cell cultures and stem cell culture method using same | Dec 26, 2018 | Issued |
Array
(
[id] => 15117181
[patent_doc_number] => 20190345223
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-11-14
[patent_title] => FUSION PROTEINS COMPRISING PDGF AND VEGF BINDING PORTIONS AND METHODS OF USING THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/197194
[patent_app_country] => US
[patent_app_date] => 2018-11-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 27268
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16197194
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/197194 | Fusion proteins comprising PDGF and VEGF binding portions and methods of using thereof | Nov 19, 2018 | Issued |
Array
(
[id] => 16028623
[patent_doc_number] => 10676720
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-06-09
[patent_title] => Combinational use of mechanical manipulation and programin derivatives to increase Oct4, Sox2, Nanog or c-Myc expression in fibroblasts
[patent_app_type] => utility
[patent_app_number] => 16/194945
[patent_app_country] => US
[patent_app_date] => 2018-11-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 26
[patent_no_of_words] => 10420
[patent_no_of_claims] => 12
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 129
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16194945
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/194945 | Combinational use of mechanical manipulation and programin derivatives to increase Oct4, Sox2, Nanog or c-Myc expression in fibroblasts | Nov 18, 2018 | Issued |
Array
(
[id] => 14231023
[patent_doc_number] => 20190127684
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-05-02
[patent_title] => COMPOSITION AND METHODS FOR CULTURING RETINAL PROGENITOR CELLS
[patent_app_type] => utility
[patent_app_number] => 16/177728
[patent_app_country] => US
[patent_app_date] => 2018-11-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 20523
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 31
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16177728
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/177728 | COMPOSITION AND METHODS FOR CULTURING RETINAL PROGENITOR CELLS | Oct 31, 2018 | Abandoned |
Array
(
[id] => 13926127
[patent_doc_number] => 20190046579
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-02-14
[patent_title] => TARGETED DISRUPTION OF T CELL RECEPTOR GENES USING ENGINEERED ZINC FINGER PROTEIN NUCLEASES
[patent_app_type] => utility
[patent_app_number] => 16/173875
[patent_app_country] => US
[patent_app_date] => 2018-10-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 20010
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 111
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16173875
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/173875 | Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases | Oct 28, 2018 | Issued |
Array
(
[id] => 14231037
[patent_doc_number] => 20190127691
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-05-02
[patent_title] => Metabolic Pressure for Stem Cell Differentiation and Purification
[patent_app_type] => utility
[patent_app_number] => 16/172364
[patent_app_country] => US
[patent_app_date] => 2018-10-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4378
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 20
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16172364
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/172364 | Metabolic Pressure for Stem Cell Differentiation and Purification | Oct 25, 2018 | Abandoned |
Array
(
[id] => 13929599
[patent_doc_number] => 20190048315
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-02-14
[patent_title] => STEM CELL-DERIVED HEPATOCYTES IN CO-CULTURE AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/157930
[patent_app_country] => US
[patent_app_date] => 2018-10-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17926
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -8
[patent_words_short_claim] => 305
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16157930
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/157930 | Stem cell-derived hepatocytes in co-culture and uses thereof | Oct 10, 2018 | Issued |
Array
(
[id] => 14749101
[patent_doc_number] => 20190257724
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-08-22
[patent_title] => Functional Targeted Brain Endoskeletonization
[patent_app_type] => utility
[patent_app_number] => 16/151057
[patent_app_country] => US
[patent_app_date] => 2018-10-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7569
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 53
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16151057
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/151057 | Functional Targeted Brain Endoskeletonization | Oct 2, 2018 | Abandoned |
Array
(
[id] => 16328720
[patent_doc_number] => 20200299686
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-09-24
[patent_title] => Methods and Compositions for Engineering Synthetic Bioswitches for Remote Control of Biological Activity
[patent_app_type] => utility
[patent_app_number] => 16/652905
[patent_app_country] => US
[patent_app_date] => 2018-10-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 28424
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -41
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16652905
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/652905 | Methods and compositions for engineering synthetic bioswitches for remote control of biological activity | Oct 1, 2018 | Issued |
Array
(
[id] => 16839793
[patent_doc_number] => 20210147805
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-20
[patent_title] => IN VITRO METHOD FOR PROVIDING STEM CELL DERIVED CARDIOMYOCYTES
[patent_app_type] => utility
[patent_app_number] => 16/649475
[patent_app_country] => US
[patent_app_date] => 2018-09-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14186
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16649475
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/649475 | IN VITRO METHOD FOR PROVIDING STEM CELL DERIVED CARDIOMYOCYTES | Sep 20, 2018 | Abandoned |
Array
(
[id] => 17734991
[patent_doc_number] => 20220220450
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-07-14
[patent_title] => FABRICATION OF A BIOMIMETIC PLATFORM SYSTEM AND METHODS OF USE
[patent_app_type] => utility
[patent_app_number] => 16/648186
[patent_app_country] => US
[patent_app_date] => 2018-09-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14406
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16648186
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/648186 | FABRICATION OF A BIOMIMETIC PLATFORM SYSTEM AND METHODS OF USE | Sep 17, 2018 | Abandoned |
Array
(
[id] => 15408477
[patent_doc_number] => 20200024560
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-01-23
[patent_title] => Additive Manufacturing of Functional Myocardial Tissue
[patent_app_type] => utility
[patent_app_number] => 16/119022
[patent_app_country] => US
[patent_app_date] => 2018-08-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11880
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 62
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16119022
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/119022 | Additive manufacturing of functional myocardial tissue | Aug 30, 2018 | Issued |
Array
(
[id] => 13931893
[patent_doc_number] => 20190049462
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-02-14
[patent_title] => LIGHT-ACTIVATED CATION CHANNEL AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/118304
[patent_app_country] => US
[patent_app_date] => 2018-08-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24026
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16118304
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/118304 | LIGHT-ACTIVATED CATION CHANNEL AND USES THEREOF | Aug 29, 2018 | Abandoned |
Array
(
[id] => 13987077
[patent_doc_number] => 20190062696
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-02-28
[patent_title] => USE OF NEUROPILIN-1 (NRP1) AS A CELL SURFACE MARKER FOR ISOLATING HUMAN CARDIAC VENTRICULAR PROGENITOR CELLS
[patent_app_type] => utility
[patent_app_number] => 16/109218
[patent_app_country] => US
[patent_app_date] => 2018-08-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 29393
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -48
[patent_words_short_claim] => 39
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16109218
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/109218 | Use of Neuropilin-1 (NRP1) as a cell surface marker for isolating human cardiac ventricular progenitor cells | Aug 21, 2018 | Issued |
Array
(
[id] => 14409771
[patent_doc_number] => 20190170729
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-06-06
[patent_title] => REGULATORY T CELL MEDIATOR PROTEINS AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/108420
[patent_app_country] => US
[patent_app_date] => 2018-08-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9487
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16108420
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/108420 | REGULATORY T CELL MEDIATOR PROTEINS AND USES THEREOF | Aug 21, 2018 | Abandoned |
Array
(
[id] => 13902301
[patent_doc_number] => 20190040355
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-02-07
[patent_title] => A method of cryopreserving an amniotic membrane of a placenta tissue sample
[patent_app_type] => utility
[patent_app_number] => 16/100593
[patent_app_country] => US
[patent_app_date] => 2018-08-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14034
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -2
[patent_words_short_claim] => 73
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16100593
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/100593 | Obtaining multipotent amnion-derived stem cell (ADSC) from amniotic membrane tissue without enzymatic digestion | Aug 9, 2018 | Issued |
Array
(
[id] => 13590099
[patent_doc_number] => 20180346598
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-06
[patent_title] => ADAM6 MICE
[patent_app_type] => utility
[patent_app_number] => 16/059871
[patent_app_country] => US
[patent_app_date] => 2018-08-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 43651
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16059871
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/059871 | ADAM6 mice | Aug 8, 2018 | Issued |
Array
(
[id] => 13622223
[patent_doc_number] => 20180362663
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-20
[patent_title] => ADAM6 MICE
[patent_app_type] => utility
[patent_app_number] => 16/059821
[patent_app_country] => US
[patent_app_date] => 2018-08-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 43656
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16059821
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/059821 | ADAM6 mice | Aug 8, 2018 | Issued |