
Jennifer Castriotta
Examiner (ID: 2648, Phone: (571)270-5279 , Office: P/3781 )
| Most Active Art Unit | 3733 |
| Art Unit(s) | 3781, 3733 |
| Total Applications | 769 |
| Issued Applications | 457 |
| Pending Applications | 68 |
| Abandoned Applications | 260 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 16108497
[patent_doc_number] => 20200206271
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-07-02
[patent_title] => COMBINATORIAL CANCER IMMUNOTHERAPY
[patent_app_type] => utility
[patent_app_number] => 16/604973
[patent_app_country] => US
[patent_app_date] => 2018-04-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 26183
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16604973
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/604973 | Combinatorial cancer immunotherapy | Apr 12, 2018 | Issued |
Array
(
[id] => 19969831
[patent_doc_number] => 12338424
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-06-24
[patent_title] => Cell structure connection method and connection support device
[patent_app_type] => utility
[patent_app_number] => 17/046264
[patent_app_country] => US
[patent_app_date] => 2018-04-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 9
[patent_no_of_words] => 0
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 275
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17046264
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/046264 | Cell structure connection method and connection support device | Apr 8, 2018 | Issued |
Array
(
[id] => 13474885
[patent_doc_number] => 20180288985
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-10-11
[patent_title] => POLY-GLUTAMINE ANDROGEN RECEPTOR KNOCK-IN MOUSE MODELS, REAGENTS AND METHODS
[patent_app_type] => utility
[patent_app_number] => 15/940387
[patent_app_country] => US
[patent_app_date] => 2018-03-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 25315
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15940387
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/940387 | Poly-glutamine androgen receptor knock-in mouse models, reagents and methods | Mar 28, 2018 | Issued |
Array
(
[id] => 16640847
[patent_doc_number] => 10918668
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-02-16
[patent_title] => Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases
[patent_app_type] => utility
[patent_app_number] => 15/936210
[patent_app_country] => US
[patent_app_date] => 2018-03-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 31
[patent_figures_cnt] => 58
[patent_no_of_words] => 31665
[patent_no_of_claims] => 9
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 690
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15936210
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/936210 | Targeted disruption of T cell receptor genes using engineered zinc finger protein nucleases | Mar 25, 2018 | Issued |
Array
(
[id] => 17490659
[patent_doc_number] => 11279951
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-03-22
[patent_title] => Adenoviral vector encoding human atonal homolog-1 (HATH1)
[patent_app_type] => utility
[patent_app_number] => 15/933689
[patent_app_country] => US
[patent_app_date] => 2018-03-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 2
[patent_figures_cnt] => 2
[patent_no_of_words] => 8853
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 91
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15933689
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/933689 | Adenoviral vector encoding human atonal homolog-1 (HATH1) | Mar 22, 2018 | Issued |
Array
(
[id] => 18384682
[patent_doc_number] => 11655454
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2023-05-23
[patent_title] => Method and apparatus for improved mesenchymal stem cell harvesting
[patent_app_type] => utility
[patent_app_number] => 15/933314
[patent_app_country] => US
[patent_app_date] => 2018-03-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 35
[patent_figures_cnt] => 47
[patent_no_of_words] => 10815
[patent_no_of_claims] => 4
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 236
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15933314
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/933314 | Method and apparatus for improved mesenchymal stem cell harvesting | Mar 21, 2018 | Issued |
Array
(
[id] => 15832383
[patent_doc_number] => 20200131473
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-04-30
[patent_title] => METHOD OF GENERATING 2 CELL-LIKE STEM CELLS
[patent_app_type] => utility
[patent_app_number] => 16/494249
[patent_app_country] => US
[patent_app_date] => 2018-03-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22767
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -6
[patent_words_short_claim] => 10
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16494249
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/494249 | METHOD OF GENERATING 2 CELL-LIKE STEM CELLS | Mar 19, 2018 | Abandoned |
Array
(
[id] => 12912574
[patent_doc_number] => 20180196034
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-07-12
[patent_title] => Engineered Three-Dimensional Breast Tissue, Adipose Tissue, and Tumor Disease Model
[patent_app_type] => utility
[patent_app_number] => 15/911713
[patent_app_country] => US
[patent_app_date] => 2018-03-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22725
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -3
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15911713
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/911713 | Engineered Three-Dimensional Breast Tissue, Adipose Tissue, and Tumor Disease Model | Mar 4, 2018 | Abandoned |
Array
(
[id] => 15590275
[patent_doc_number] => 20200071672
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-03-05
[patent_title] => METHODS AND SYSTEMS FOR FUNCTIONAL MATURATION OF iPSC AND ESC DERIVED CARDIOMYOCYTES
[patent_app_type] => utility
[patent_app_number] => 16/490302
[patent_app_country] => US
[patent_app_date] => 2018-03-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19798
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16490302
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/490302 | Methods and systems for functional maturation of iPSC and ESC derived cardiomyocytes | Mar 2, 2018 | Issued |
Array
(
[id] => 15527685
[patent_doc_number] => 20200056148
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-02-20
[patent_title] => CELL CULTURE METHOD AND CELL CULTURE SYSTEM
[patent_app_type] => utility
[patent_app_number] => 16/486212
[patent_app_country] => US
[patent_app_date] => 2018-01-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5562
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -4
[patent_words_short_claim] => 133
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16486212
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/486212 | Cell culture method and cell culture system | Jan 24, 2018 | Issued |
Array
(
[id] => 12766465
[patent_doc_number] => 20180147323
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-05-31
[patent_title] => PRE-STRESSING AND CAPPING BIOPROSTHETIC TISSUE
[patent_app_type] => utility
[patent_app_number] => 15/879339
[patent_app_country] => US
[patent_app_date] => 2018-01-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6659
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 147
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15879339
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/879339 | Pre-stressing and capping bioprosthetic tissue | Jan 23, 2018 | Issued |
Array
(
[id] => 15083677
[patent_doc_number] => 20190336649
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-11-07
[patent_title] => CRYOGEL 3D SCAFFOLDS AND METHODS FOR PRODUCING THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/476564
[patent_app_country] => US
[patent_app_date] => 2018-01-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10803
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16476564
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/476564 | Cryogel 3D scaffolds and methods for producing thereof | Jan 9, 2018 | Issued |
Array
(
[id] => 12832297
[patent_doc_number] => 20180169271
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-06-21
[patent_title] => ARMED REPLICATION-COMPETENT ONCOLYTIC ADENOVIRUSES
[patent_app_type] => utility
[patent_app_number] => 15/847612
[patent_app_country] => US
[patent_app_date] => 2017-12-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8751
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -36
[patent_words_short_claim] => 39
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15847612
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/847612 | ARMED REPLICATION-COMPETENT ONCOLYTIC ADENOVIRUSES | Dec 18, 2017 | Abandoned |
Array
(
[id] => 18718103
[patent_doc_number] => 11795438
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-10-24
[patent_title] => Composition for promoting proliferation of pluripotent stem cells, and method for promoting proliferation of pluripotent stem cells
[patent_app_type] => utility
[patent_app_number] => 16/471312
[patent_app_country] => US
[patent_app_date] => 2017-12-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 6
[patent_no_of_words] => 4178
[patent_no_of_claims] => 5
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 97
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16471312
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/471312 | Composition for promoting proliferation of pluripotent stem cells, and method for promoting proliferation of pluripotent stem cells | Dec 18, 2017 | Issued |
Array
(
[id] => 15619297
[patent_doc_number] => 20200080053
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-03-12
[patent_title] => USE OF PEPTIDE COMPOUNDS FOR PROMOTING SURVIVAL, GROWTH AND CELL DIFFERENTIATION
[patent_app_type] => utility
[patent_app_number] => 16/466177
[patent_app_country] => US
[patent_app_date] => 2017-12-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5973
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16466177
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/466177 | Use of peptide compounds for promoting survival, growth and cell differentiation | Dec 4, 2017 | Issued |
Array
(
[id] => 15254565
[patent_doc_number] => 20190376016
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-12-12
[patent_title] => PERSONALIZED CELLULAR BIOMANUFACTURING WITH A CLOSED, MINIATURE CELL CULTURE SYSTEM
[patent_app_type] => utility
[patent_app_number] => 16/462753
[patent_app_country] => US
[patent_app_date] => 2017-11-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5931
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -23
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16462753
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/462753 | PERSONALIZED CELLULAR BIOMANUFACTURING WITH A CLOSED, MINIATURE CELL CULTURE SYSTEM | Nov 21, 2017 | Abandoned |
Array
(
[id] => 17135021
[patent_doc_number] => 11136567
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-10-05
[patent_title] => CRISPR/CPF1 systems and methods
[patent_app_type] => utility
[patent_app_number] => 15/821736
[patent_app_country] => US
[patent_app_date] => 2017-11-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 17347
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 18
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15821736
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/821736 | CRISPR/CPF1 systems and methods | Nov 21, 2017 | Issued |
Array
(
[id] => 15210371
[patent_doc_number] => 20190367872
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-12-05
[patent_title] => ORGANOID TISSUE ENGINEERING
[patent_app_type] => utility
[patent_app_number] => 16/462313
[patent_app_country] => US
[patent_app_date] => 2017-11-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14566
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 48
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16462313
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/462313 | ORGANOID TISSUE ENGINEERING | Nov 16, 2017 | Pending |
Array
(
[id] => 15646699
[patent_doc_number] => 20200085879
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-03-19
[patent_title] => METHOD FOR EFFICIENTLY PRODUCING 3D MIDBRAIN-LIKE ORGANOID THROUGH SPECIFIC ELECTROMAGNETIC WAVE PROCESSING
[patent_app_type] => utility
[patent_app_number] => 16/470584
[patent_app_country] => US
[patent_app_date] => 2017-11-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4402
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 22
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16470584
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/470584 | Method for efficiently producing 3D midbrain-like organoid through specific electromagnetic wave processing | Oct 31, 2017 | Issued |
Array
(
[id] => 12729733
[patent_doc_number] => 20180135078
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-05-17
[patent_title] => AAV-VECTORS FOR USE IN GENE THERAPY OF CHOROIDEREMIA
[patent_app_type] => utility
[patent_app_number] => 15/799852
[patent_app_country] => US
[patent_app_date] => 2017-10-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8324
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 19
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15799852
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/799852 | AAV-VECTORS FOR USE IN GENE THERAPY OF CHOROIDEREMIA | Oct 30, 2017 | Abandoned |