
Jennifer Castriotta
Examiner (ID: 2648, Phone: (571)270-5279 , Office: P/3781 )
| Most Active Art Unit | 3733 |
| Art Unit(s) | 3781, 3733 |
| Total Applications | 769 |
| Issued Applications | 457 |
| Pending Applications | 68 |
| Abandoned Applications | 260 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 14831779
[patent_doc_number] => 20190274290
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-09-12
[patent_title] => GENETICALLY MODIFIED MOUSE MODEL FOR HUMAN HEPATOCYTE XENOTRANSPLANTATION
[patent_app_type] => utility
[patent_app_number] => 16/345180
[patent_app_country] => US
[patent_app_date] => 2017-10-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19275
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -28
[patent_words_short_claim] => 9
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16345180
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/345180 | GENETICALLY MODIFIED MOUSE MODEL FOR HUMAN HEPATOCYTE XENOTRANSPLANTATION | Oct 26, 2017 | Abandoned |
Array
(
[id] => 14360717
[patent_doc_number] => 10301646
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-05-28
[patent_title] => Nuclease-mediated targeting with large targeting vectors
[patent_app_type] => utility
[patent_app_number] => 15/792112
[patent_app_country] => US
[patent_app_date] => 2017-10-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 1
[patent_figures_cnt] => 1
[patent_no_of_words] => 19033
[patent_no_of_claims] => 28
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 210
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15792112
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/792112 | Nuclease-mediated targeting with large targeting vectors | Oct 23, 2017 | Issued |
Array
(
[id] => 12644853
[patent_doc_number] => 20180106782
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-04-19
[patent_title] => HIGH THROUGHPUT CARDIOTOXICITY SCREENING PLATFORM
[patent_app_type] => utility
[patent_app_number] => 15/784620
[patent_app_country] => US
[patent_app_date] => 2017-10-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 25160
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15784620
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/784620 | HIGH THROUGHPUT CARDIOTOXICITY SCREENING PLATFORM | Oct 15, 2017 | Abandoned |
Array
(
[id] => 12642096
[patent_doc_number] => 20180105863
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-04-19
[patent_title] => NEURAL STEM CELL THERAPY FOR OBESITY AND DIABETES
[patent_app_type] => utility
[patent_app_number] => 15/783100
[patent_app_country] => US
[patent_app_date] => 2017-10-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18643
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -6
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15783100
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/783100 | NEURAL STEM CELL THERAPY FOR OBESITY AND DIABETES | Oct 12, 2017 | Abandoned |
Array
(
[id] => 19106010
[patent_doc_number] => 11959095
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-04-16
[patent_title] => Compositions, cell constructs, and methods of making and using the same
[patent_app_type] => utility
[patent_app_number] => 16/341525
[patent_app_country] => US
[patent_app_date] => 2017-10-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 19
[patent_no_of_words] => 21057
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 61
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16341525
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/341525 | Compositions, cell constructs, and methods of making and using the same | Oct 12, 2017 | Issued |
Array
(
[id] => 12625005
[patent_doc_number] => 20180100165
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-04-12
[patent_title] => RAAV-GUANYLATE CYCLASE COMPOSITIONS AND METHODS FOR TREATING LEBER'S CONGENITAL AMAUROSIS-1 (LCA1)
[patent_app_type] => utility
[patent_app_number] => 15/728628
[patent_app_country] => US
[patent_app_date] => 2017-10-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 36617
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15728628
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/728628 | RAAV-GUANYLATE CYCLASE COMPOSITIONS AND METHODS FOR TREATING LEBER'S CONGENITAL AMAUROSIS-1 (LCA1) | Oct 9, 2017 | Abandoned |
Array
(
[id] => 13326137
[patent_doc_number] => 20180214606
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-08-02
[patent_title] => ORAL TISSUE REGENERATION AND REPAIR
[patent_app_type] => utility
[patent_app_number] => 15/698172
[patent_app_country] => US
[patent_app_date] => 2017-09-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 29839
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -25
[patent_words_short_claim] => 43
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15698172
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/698172 | ORAL TISSUE REGENERATION AND REPAIR | Sep 6, 2017 | Abandoned |
Array
(
[id] => 14501941
[patent_doc_number] => 20190194625
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-06-27
[patent_title] => BLOOD BRAIN BARRIER MODEL AND METHODS OF MAKING AND USING THE SAME
[patent_app_type] => utility
[patent_app_number] => 16/322232
[patent_app_country] => US
[patent_app_date] => 2017-08-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6152
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -24
[patent_words_short_claim] => 72
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16322232
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/322232 | Blood brain barrier model and methods of making and using the same | Aug 3, 2017 | Issued |
Array
(
[id] => 12056832
[patent_doc_number] => 20170333177
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-11-23
[patent_title] => 'BIOREACTOR SYSTEM AND METHOD OF ENHANCING FUNCTIONALITY OF MUSCLE CULTURED IN VITRO'
[patent_app_type] => utility
[patent_app_number] => 15/667986
[patent_app_country] => US
[patent_app_date] => 2017-08-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 6145
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15667986
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/667986 | BIOREACTOR SYSTEM AND METHOD OF ENHANCING FUNCTIONALITY OF MUSCLE CULTURED IN VITRO | Aug 2, 2017 | Abandoned |
Array
(
[id] => 16399098
[patent_doc_number] => 20200339956
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-10-29
[patent_title] => BLOOD BRAIN BARRIER MODEL
[patent_app_type] => utility
[patent_app_number] => 16/321792
[patent_app_country] => US
[patent_app_date] => 2017-07-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16225
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16321792
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/321792 | BLOOD BRAIN BARRIER MODEL | Jul 30, 2017 | Pending |
Array
(
[id] => 17088629
[patent_doc_number] => 11116799
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-09-14
[patent_title] => Generation of uniform hepatocytes from human embryonic stem cells by inhibiting TGF-beta and methods of maintaining hepatic cultures
[patent_app_type] => utility
[patent_app_number] => 15/650595
[patent_app_country] => US
[patent_app_date] => 2017-07-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 19
[patent_figures_cnt] => 24
[patent_no_of_words] => 18170
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 20
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15650595
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/650595 | Generation of uniform hepatocytes from human embryonic stem cells by inhibiting TGF-beta and methods of maintaining hepatic cultures | Jul 13, 2017 | Issued |
Array
(
[id] => 14747297
[patent_doc_number] => 20190256822
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-08-22
[patent_title] => HEPATIC CELL LINE RESISTANT TO DIMETHYL SULFOXIDE, CELL CULTURE AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/312772
[patent_app_country] => US
[patent_app_date] => 2017-07-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19893
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 26
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16312772
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/312772 | HEPATIC CELL LINE RESISTANT TO DIMETHYL SULFOXIDE, CELL CULTURE AND USES THEREOF | Jun 30, 2017 | Abandoned |
Array
(
[id] => 14863111
[patent_doc_number] => 20190281797
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-09-19
[patent_title] => PSORIASIS-INDUCED ANIMAL MODEL AND USE THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/315687
[patent_app_country] => US
[patent_app_date] => 2017-06-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9538
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16315687
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/315687 | PSORIASIS-INDUCED ANIMAL MODEL AND USE THEREOF | Jun 29, 2017 | Abandoned |
Array
(
[id] => 12746533
[patent_doc_number] => 20180140678
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-05-24
[patent_title] => Directed Stem Cell Recruitment
[patent_app_type] => utility
[patent_app_number] => 15/640063
[patent_app_country] => US
[patent_app_date] => 2017-06-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16417
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -24
[patent_words_short_claim] => 29
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15640063
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/640063 | Directed stem cell recruitment | Jun 29, 2017 | Issued |
Array
(
[id] => 16343896
[patent_doc_number] => 20200308546
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-10-01
[patent_title] => ENGINEERED CARDIOMYOCYTES AND USES THREOF
[patent_app_type] => utility
[patent_app_number] => 16/311859
[patent_app_country] => US
[patent_app_date] => 2017-06-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15102
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16311859
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/311859 | ENGINEERED CARDIOMYOCYTES AND USES THREOF | Jun 26, 2017 | Abandoned |
Array
(
[id] => 15306103
[patent_doc_number] => 10517731
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-12-31
[patent_title] => Tissue engineering system for making personalized bone graft
[patent_app_type] => utility
[patent_app_number] => 15/633317
[patent_app_country] => US
[patent_app_date] => 2017-06-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 16
[patent_figures_cnt] => 39
[patent_no_of_words] => 6058
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 197
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15633317
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/633317 | Tissue engineering system for making personalized bone graft | Jun 25, 2017 | Issued |
Array
(
[id] => 14716167
[patent_doc_number] => 20190249147
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-08-15
[patent_title] => BIOLOGICALLY RELEVANT IN VITRO SCREENING OF HUMAN NEURONS
[patent_app_type] => utility
[patent_app_number] => 16/310632
[patent_app_country] => US
[patent_app_date] => 2017-06-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22523
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -24
[patent_words_short_claim] => 25
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16310632
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/310632 | BIOLOGICALLY RELEVANT IN VITRO SCREENING OF HUMAN NEURONS | Jun 19, 2017 | Abandoned |
Array
(
[id] => 12125094
[patent_doc_number] => 20180008680
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-01-11
[patent_title] => 'Messenger RNA Therapy for the Treatment of Ornithine Transcarbamylase Deficiency'
[patent_app_type] => utility
[patent_app_number] => 15/621616
[patent_app_country] => US
[patent_app_date] => 2017-06-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 19658
[patent_no_of_claims] => 32
[patent_no_of_ind_claims] => 11
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15621616
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/621616 | Messenger RNA therapy for the treatment of ornithine transcarbamylase deficiency | Jun 12, 2017 | Issued |
Array
(
[id] => 12092821
[patent_doc_number] => 20170349914
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-12-07
[patent_title] => 'DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF CRISPR SYSTEMS AND COMPOSITIONS FOR GENOME EDITING AS TO HEMATOPOIETIC STEM CELLS (HSCs)'
[patent_app_type] => utility
[patent_app_number] => 15/619737
[patent_app_country] => US
[patent_app_date] => 2017-06-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 66588
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15619737
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/619737 | DELIVERY, USE AND THERAPEUTIC APPLICATIONS OF CRISPR SYSTEMS AND COMPOSITIONS FOR GENOME EDITING AS TO HEMATOPOIETIC STEM CELLS (HSCs) | Jun 11, 2017 | Pending |
Array
(
[id] => 12093785
[patent_doc_number] => 20170350879
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-12-07
[patent_title] => 'LONG TERM HEMATOPOIETIC STEM CELL SPECIFIC REPORTER MOUSE AND USES THEREOF'
[patent_app_type] => utility
[patent_app_number] => 15/616632
[patent_app_country] => US
[patent_app_date] => 2017-06-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 14
[patent_figures_cnt] => 14
[patent_no_of_words] => 12198
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15616632
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/616632 | Long term hematopoietic stem cell specific reporter mouse and uses thereof | Jun 6, 2017 | Issued |