
Jennifer Castriotta
Examiner (ID: 2648, Phone: (571)270-5279 , Office: P/3781 )
| Most Active Art Unit | 3733 |
| Art Unit(s) | 3781, 3733 |
| Total Applications | 769 |
| Issued Applications | 457 |
| Pending Applications | 68 |
| Abandoned Applications | 260 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 12185704
[patent_doc_number] => 20180044640
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-02-15
[patent_title] => 'CONTRACTILE CELLULAR CONSTRUCT FOR CELL CULTURE'
[patent_app_type] => utility
[patent_app_number] => 15/553285
[patent_app_country] => US
[patent_app_date] => 2016-05-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 18
[patent_figures_cnt] => 18
[patent_no_of_words] => 6073
[patent_no_of_claims] => 27
[patent_no_of_ind_claims] => 11
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15553285
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/553285 | CONTRACTILE CELLULAR CONSTRUCT FOR CELL CULTURE | May 15, 2016 | Abandoned |
Array
(
[id] => 11082302
[patent_doc_number] => 20160279267
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-09-29
[patent_title] => 'OPTICAL TISSUE INTERFACE METHOD AND APPARATUS FOR STIMULATING CELLS'
[patent_app_type] => utility
[patent_app_number] => 15/156124
[patent_app_country] => US
[patent_app_date] => 2016-05-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 15410
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15156124
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/156124 | OPTICAL TISSUE INTERFACE METHOD AND APPARATUS FOR STIMULATING CELLS | May 15, 2016 | Abandoned |
Array
(
[id] => 11061967
[patent_doc_number] => 20160258929
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-09-08
[patent_title] => 'CELL LINE, SYSTEM AND METHOD FOR OPTICAL-BASED SCREENING OF ION-CHANNEL MODULATORS'
[patent_app_type] => utility
[patent_app_number] => 15/153305
[patent_app_country] => US
[patent_app_date] => 2016-05-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 6425
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15153305
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/153305 | Cell line, system and method for optical-based screening of ion-channel modulators | May 11, 2016 | Issued |
Array
(
[id] => 17527041
[patent_doc_number] => 11299714
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-04-12
[patent_title] => Engineered adult-like human heart tissue
[patent_app_type] => utility
[patent_app_number] => 15/151751
[patent_app_country] => US
[patent_app_date] => 2016-05-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 81
[patent_figures_cnt] => 1
[patent_no_of_words] => 14802
[patent_no_of_claims] => 27
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 58
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15151751
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/151751 | Engineered adult-like human heart tissue | May 10, 2016 | Issued |
Array
(
[id] => 17742778
[patent_doc_number] => 11390835
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-07-19
[patent_title] => Growth media for three-dimensional cell culture
[patent_app_type] => utility
[patent_app_number] => 15/571866
[patent_app_country] => US
[patent_app_date] => 2016-05-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 10
[patent_no_of_words] => 9247
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 135
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15571866
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/571866 | Growth media for three-dimensional cell culture | May 6, 2016 | Issued |
Array
(
[id] => 12724306
[patent_doc_number] => 20180133269
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-05-17
[patent_title] => ONCOLYTIC HSV1 VECTOR AND METHODS OF USE
[patent_app_type] => utility
[patent_app_number] => 15/571749
[patent_app_country] => US
[patent_app_date] => 2016-05-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17456
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 75
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15571749
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/571749 | Oncolytic HSV1 vector and methods of use | May 3, 2016 | Issued |
Array
(
[id] => 11727111
[patent_doc_number] => 20170188554
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-07-06
[patent_title] => 'ANIMAL MODEL FOR STUDYING COMPLEX HUMAN DISEASES'
[patent_app_type] => utility
[patent_app_number] => 15/326762
[patent_app_country] => US
[patent_app_date] => 2016-04-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 10
[patent_no_of_words] => 24082
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15326762
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/326762 | ANIMAL MODEL FOR STUDYING COMPLEX HUMAN DISEASES | Apr 17, 2016 | Abandoned |
Array
(
[id] => 12681859
[patent_doc_number] => 20180119119
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-05-03
[patent_title] => DIRECTED DIFFERENTIATION OF PLURIPOTENT STEM CELLS BY BACTERIAL INJECTION OF TALEN PROTEINS
[patent_app_type] => utility
[patent_app_number] => 15/566460
[patent_app_country] => US
[patent_app_date] => 2016-04-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18745
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -64
[patent_words_short_claim] => 57
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15566460
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/566460 | DIRECTED DIFFERENTIATION OF PLURIPOTENT STEM CELLS BY BACTERIAL INJECTION OF TALEN PROTEINS | Apr 14, 2016 | Abandoned |
Array
(
[id] => 18962875
[patent_doc_number] => 11896614
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-02-13
[patent_title] => Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells
[patent_app_type] => utility
[patent_app_number] => 15/567156
[patent_app_country] => US
[patent_app_date] => 2016-04-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 41
[patent_figures_cnt] => 65
[patent_no_of_words] => 81214
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 236
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15567156
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/567156 | Methods for improving the efficacy and expansion of chimeric antigen receptor-expressing cells | Apr 14, 2016 | Issued |
Array
(
[id] => 12681859
[patent_doc_number] => 20180119119
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-05-03
[patent_title] => DIRECTED DIFFERENTIATION OF PLURIPOTENT STEM CELLS BY BACTERIAL INJECTION OF TALEN PROTEINS
[patent_app_type] => utility
[patent_app_number] => 15/566460
[patent_app_country] => US
[patent_app_date] => 2016-04-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18745
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -64
[patent_words_short_claim] => 57
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15566460
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/566460 | DIRECTED DIFFERENTIATION OF PLURIPOTENT STEM CELLS BY BACTERIAL INJECTION OF TALEN PROTEINS | Apr 14, 2016 | Abandoned |
Array
(
[id] => 12661084
[patent_doc_number] => 20180112194
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-04-26
[patent_title] => MUTANT HUMAN DEOXYCYTIDINE KINASE
[patent_app_type] => utility
[patent_app_number] => 15/566024
[patent_app_country] => US
[patent_app_date] => 2016-04-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18849
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15566024
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/566024 | MUTANT HUMAN DEOXYCYTIDINE KINASE | Apr 12, 2016 | Abandoned |
Array
(
[id] => 17434207
[patent_doc_number] => 11259510
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-03-01
[patent_title] => Humanized T cell mediated immune responses in non-human animals
[patent_app_type] => utility
[patent_app_number] => 15/564723
[patent_app_country] => US
[patent_app_date] => 2016-04-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 28
[patent_figures_cnt] => 44
[patent_no_of_words] => 52913
[patent_no_of_claims] => 31
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 346
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15564723
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/564723 | Humanized T cell mediated immune responses in non-human animals | Apr 5, 2016 | Issued |
Array
(
[id] => 11093931
[patent_doc_number] => 20160290899
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-10-06
[patent_title] => 'Functional Targeted Brain Endoskeletonization'
[patent_app_type] => utility
[patent_app_number] => 15/090374
[patent_app_country] => US
[patent_app_date] => 2016-04-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 7844
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15090374
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/090374 | Functional Targeted Brain Endoskeletonization | Apr 3, 2016 | Abandoned |
Array
(
[id] => 12661096
[patent_doc_number] => 20180112198
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-04-26
[patent_title] => TUMOR SUPPRESSION BY MCPIP1
[patent_app_type] => utility
[patent_app_number] => 15/566626
[patent_app_country] => US
[patent_app_date] => 2016-03-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 30830
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15566626
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/566626 | TUMOR SUPPRESSION BY MCPIP1 | Mar 29, 2016 | Abandoned |
Array
(
[id] => 12814060
[patent_doc_number] => 20180163190
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-06-14
[patent_title] => ANTI-TUMOR MEDICAMENT BASED ON ADENOVIRUS
[patent_app_type] => utility
[patent_app_number] => 15/560076
[patent_app_country] => US
[patent_app_date] => 2016-03-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7338
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 53
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15560076
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/560076 | Anti-tumor medicament based on adenovirus | Mar 23, 2016 | Issued |
Array
(
[id] => 13168345
[patent_doc_number] => 10100277
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2018-10-16
[patent_title] => Pluripotent stem cell expansion and passage using a stirred tank bioreactor
[patent_app_type] => utility
[patent_app_number] => 15/075211
[patent_app_country] => US
[patent_app_date] => 2016-03-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 14
[patent_no_of_words] => 8056
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 145
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15075211
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/075211 | Pluripotent stem cell expansion and passage using a stirred tank bioreactor | Mar 20, 2016 | Issued |
Array
(
[id] => 13386525
[patent_doc_number] => 20180244804
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-08-30
[patent_title] => NON-HUMAN ANIMALS THAT SELECT FOR LIGHT CHAIN VARIABLE REGIONS THAT BIND ANTIGEN
[patent_app_type] => utility
[patent_app_number] => 15/559358
[patent_app_country] => US
[patent_app_date] => 2016-03-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 54734
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -28
[patent_words_short_claim] => 48
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15559358
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/559358 | Non-human animals that select for light chain variable regions that bind antigen | Mar 17, 2016 | Issued |
Array
(
[id] => 10978664
[patent_doc_number] => 20160175607
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-06-23
[patent_title] => 'SYSTEMS, METHODS AND COMPOSITIONS FOR OPTICAL STIMULATION OF TARGET CELLS'
[patent_app_type] => utility
[patent_app_number] => 15/063296
[patent_app_country] => US
[patent_app_date] => 2016-03-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 21
[patent_figures_cnt] => 21
[patent_no_of_words] => 18372
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15063296
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/063296 | Method for optically controlling a neuron with a mammalian codon optimized nucleotide sequence that encodes a variant opsin polypeptide derived from natromonas pharaonis (NpHR) | Mar 6, 2016 | Issued |
Array
(
[id] => 12185706
[patent_doc_number] => 20180044642
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-02-15
[patent_title] => 'REPROGRAMMING PROGENITOR COMPOSITIONS AND METHODS OF USE THEREFORE'
[patent_app_type] => utility
[patent_app_number] => 15/552476
[patent_app_country] => US
[patent_app_date] => 2016-02-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 22
[patent_figures_cnt] => 22
[patent_no_of_words] => 27819
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 8
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15552476
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/552476 | Reprogramming progenitor compositions and methods of use therefore | Feb 25, 2016 | Issued |
Array
(
[id] => 14119661
[patent_doc_number] => 10246680
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-04-02
[patent_title] => Methods and compositions for feeder-free pluripotent stem cell media containing human serum
[patent_app_type] => utility
[patent_app_number] => 15/050069
[patent_app_country] => US
[patent_app_date] => 2016-02-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 11
[patent_no_of_words] => 11883
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 44
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15050069
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/050069 | Methods and compositions for feeder-free pluripotent stem cell media containing human serum | Feb 21, 2016 | Issued |