| Application number | Title of the application | Filing Date | Status |
|---|
Array
(
[id] => 17533849
[patent_doc_number] => 20220112458
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-04-14
[patent_title] => USE OF NEUROPILIN-1 (NRP1) AS A CELL SURFACE MARKER FOR ISOLATING HUMAN CARDIAC VENTRICULAR PROGENITOR CELLS
[patent_app_type] => utility
[patent_app_number] => 17/507454
[patent_app_country] => US
[patent_app_date] => 2021-10-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 29420
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 39
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17507454
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/507454 | Use of neuropilin-1 (NRP1) as a cell surface marker for isolating human cardiac ventricular progenitor cells | Oct 20, 2021 | Issued |
Array
(
[id] => 17957872
[patent_doc_number] => 20220338452
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-10-27
[patent_title] => ORGAN REGENERATION METHOD UTILIZING BLASTOCYST COMPLEMENTATION
[patent_app_type] => utility
[patent_app_number] => 17/497356
[patent_app_country] => US
[patent_app_date] => 2021-10-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18377
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 30
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17497356
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/497356 | ORGAN REGENERATION METHOD UTILIZING BLASTOCYST COMPLEMENTATION | Oct 7, 2021 | Abandoned |
Array
(
[id] => 17333755
[patent_doc_number] => 20220000086
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-01-06
[patent_title] => GENETICALLY MODIFIED NON-HUMAN ANIMAL WITH HUMAN OR CHIMERIC GENES
[patent_app_type] => utility
[patent_app_number] => 17/483079
[patent_app_country] => US
[patent_app_date] => 2021-09-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 30075
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -87
[patent_words_short_claim] => 21
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17483079
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/483079 | GENETICALLY MODIFIED NON-HUMAN ANIMAL WITH HUMAN OR CHIMERIC GENES | Sep 22, 2021 | Abandoned |
Array
(
[id] => 17314878
[patent_doc_number] => 20210403926
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-12-30
[patent_title] => METHODS AND COMPOSITIONS FOR EFFICIENT DELIVERY OF NUCLEIC ACIDS AND RNA-BASED ANTIMICROBIALS
[patent_app_type] => utility
[patent_app_number] => 17/471776
[patent_app_country] => US
[patent_app_date] => 2021-09-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 30607
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 129
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17471776
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/471776 | METHODS AND COMPOSITIONS FOR EFFICIENT DELIVERY OF NUCLEIC ACIDS AND RNA-BASED ANTIMICROBIALS | Sep 9, 2021 | Pending |
Array
(
[id] => 17336362
[patent_doc_number] => 20220002693
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-01-06
[patent_title] => CRISPR/CPF1 SYSTEMS AND METHODS
[patent_app_type] => utility
[patent_app_number] => 17/469578
[patent_app_country] => US
[patent_app_date] => 2021-09-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17002
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -5
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17469578
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/469578 | CRISPR/CPF1 SYSTEMS AND METHODS | Sep 7, 2021 | Pending |
Array
(
[id] => 17520763
[patent_doc_number] => 20220106612
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-04-07
[patent_title] => ADENO-ASSOCIATED VIRUS VECTOR
[patent_app_type] => utility
[patent_app_number] => 17/466237
[patent_app_country] => US
[patent_app_date] => 2021-09-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 23999
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17466237
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/466237 | ADENO-ASSOCIATED VIRUS VECTOR | Sep 2, 2021 | Pending |
Array
(
[id] => 17761759
[patent_doc_number] => 20220235371
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-07-28
[patent_title] => SCALABLE LENTIVIRAL VECTOR PRODUCTION SYSTEM COMPATIBLE WITH INDUSTRIAL PHARMACEUTICAL APPLICATIONS
[patent_app_type] => utility
[patent_app_number] => 17/464727
[patent_app_country] => US
[patent_app_date] => 2021-09-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7830
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 47
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17464727
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/464727 | SCALABLE LENTIVIRAL VECTOR PRODUCTION SYSTEM COMPATIBLE WITH INDUSTRIAL PHARMACEUTICAL APPLICATIONS | Sep 1, 2021 | Abandoned |
Array
(
[id] => 17299861
[patent_doc_number] => 20210395700
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-12-23
[patent_title] => Engineered Liver Tissues, Arrays Thereof, and Methods of Making the Same
[patent_app_type] => utility
[patent_app_number] => 17/465801
[patent_app_country] => US
[patent_app_date] => 2021-09-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 26492
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17465801
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/465801 | Engineered Liver Tissues, Arrays Thereof, and Methods of Making the Same | Sep 1, 2021 | Pending |
Array
(
[id] => 18692593
[patent_doc_number] => 20230322899
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-10-12
[patent_title] => FUSION PROTEIN ENHANCING CELL THERAPY
[patent_app_type] => utility
[patent_app_number] => 18/043021
[patent_app_country] => US
[patent_app_date] => 2021-08-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 25000
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 88
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18043021
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/043021 | FUSION PROTEIN ENHANCING CELL THERAPY | Aug 23, 2021 | Pending |
Array
(
[id] => 17414059
[patent_doc_number] => 20220048963
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-17
[patent_title] => NUCLEAR REPROGRAMMING FACTOR AND INDUCED PLURIPOTENT STEM CELLS
[patent_app_type] => utility
[patent_app_number] => 17/445282
[patent_app_country] => US
[patent_app_date] => 2021-08-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 33909
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -23
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17445282
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/445282 | Nuclear reprogramming factor and induced pluripotent stem cells | Aug 16, 2021 | Issued |
Array
(
[id] => 18628485
[patent_doc_number] => 20230287350
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-09-14
[patent_title] => PRODUCTION OF EXTRACELLULAR VESICLES FROM MUSCLE CELLS
[patent_app_type] => utility
[patent_app_number] => 18/005879
[patent_app_country] => US
[patent_app_date] => 2021-08-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17929
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18005879
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/005879 | PRODUCTION OF EXTRACELLULAR VESICLES FROM MUSCLE CELLS | Aug 15, 2021 | Pending |
Array
(
[id] => 18952683
[patent_doc_number] => 20240041010
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-02-08
[patent_title] => GENERATION OF SURROGATE SIRES AND DAMS BY ABLATION OF ENDOGENOUS GERMLINE
[patent_app_type] => utility
[patent_app_number] => 18/007156
[patent_app_country] => US
[patent_app_date] => 2021-07-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17586
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -28
[patent_words_short_claim] => 39
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18007156
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/007156 | GENERATION OF SURROGATE SIRES AND DAMS BY ABLATION OF ENDOGENOUS GERMLINE | Jul 29, 2021 | Pending |
Array
(
[id] => 17355382
[patent_doc_number] => 20220016178
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-01-20
[patent_title] => Generation Of Uniform Hepatocytes From Human Embryonic Stem Cells By Inhibiting TGF-BETA and Methods Of Maintaining Hepatic Cultures
[patent_app_type] => utility
[patent_app_number] => 17/443786
[patent_app_country] => US
[patent_app_date] => 2021-07-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18219
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 62
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17443786
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/443786 | Generation Of Uniform Hepatocytes From Human Embryonic Stem Cells By Inhibiting TGF-BETA and Methods Of Maintaining Hepatic Cultures | Jul 26, 2021 | Pending |
Array
(
[id] => 17398243
[patent_doc_number] => 20220040333
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-10
[patent_title] => Use of neuroglobin agonist for preventing or treating mitochondrial RCCI and/or RCCIII deficiency disease
[patent_app_type] => utility
[patent_app_number] => 17/373944
[patent_app_country] => US
[patent_app_date] => 2021-07-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 36262
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -8
[patent_words_short_claim] => 51
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17373944
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/373944 | Use of neuroglobin agonist for preventing or treating mitochondrial RCCI and/or RCCIII deficiency disease | Jul 12, 2021 | Abandoned |
Array
(
[id] => 17357077
[patent_doc_number] => 20220017873
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-01-20
[patent_title] => Human Pluripotent Stem Cell-Based Models for Predictive Developmental Neural Toxicity
[patent_app_type] => utility
[patent_app_number] => 17/373523
[patent_app_country] => US
[patent_app_date] => 2021-07-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19175
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17373523
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/373523 | Human Pluripotent Stem Cell-Based Models for Predictive Developmental Neural Toxicity | Jul 11, 2021 | Pending |
Array
(
[id] => 18692931
[patent_doc_number] => 20230323289
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-10-12
[patent_title] => Composition for Pluripotent Cell Undifferentiated State Maintenance Culture, Medium for Pluripotent Cell Undifferentiated State Maintenance Culture, Method for Pluripotent Cell Undifferentiated State Maintenance Culture, and Method for Producing Pluripotent Cells
[patent_app_type] => utility
[patent_app_number] => 18/006163
[patent_app_country] => US
[patent_app_date] => 2021-07-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9665
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 12
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18006163
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/006163 | Composition for Pluripotent Cell Undifferentiated State Maintenance Culture, Medium for Pluripotent Cell Undifferentiated State Maintenance Culture, Method for Pluripotent Cell Undifferentiated State Maintenance Culture, and Method for Producing Pluripotent Cells | Jul 8, 2021 | Pending |
Array
(
[id] => 17443757
[patent_doc_number] => 20220064262
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-03-03
[patent_title] => FUSION PROTEINS COMPRISING PDGF AND VEGF BINDING PORTIONS AND METHODS OF USING THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/367027
[patent_app_country] => US
[patent_app_date] => 2021-07-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 27169
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17367027
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/367027 | FUSION PROTEINS COMPRISING PDGF AND VEGF BINDING PORTIONS AND METHODS OF USING THEREOF | Jul 1, 2021 | Abandoned |
Array
(
[id] => 18280097
[patent_doc_number] => 20230095569
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-03-30
[patent_title] => ANTIBODIES AND METHODS FOR TREATING CLAUDIN-ASSOCIATED DISEASES
[patent_app_type] => utility
[patent_app_number] => 17/794265
[patent_app_country] => US
[patent_app_date] => 2021-06-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 34103
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17794265
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/794265 | ANTIBODIES AND METHODS FOR TREATING CLAUDIN-ASSOCIATED DISEASES | Jun 22, 2021 | Pending |
Array
(
[id] => 20433404
[patent_doc_number] => 12503677
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-12-23
[patent_title] => Plant fat-based scaffolds for the growth of cell-based meats and methods of making such products
[patent_app_type] => utility
[patent_app_number] => 17/304235
[patent_app_country] => US
[patent_app_date] => 2021-06-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 1
[patent_figures_cnt] => 1
[patent_no_of_words] => 1905
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 97
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17304235
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/304235 | Plant fat-based scaffolds for the growth of cell-based meats and methods of making such products | Jun 15, 2021 | Issued |
Array
(
[id] => 19826453
[patent_doc_number] => 12247219
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-03-11
[patent_title] => Method for inducing differentiation of corneal epithelial cells from pluripotent stem cells
[patent_app_type] => utility
[patent_app_number] => 17/348174
[patent_app_country] => US
[patent_app_date] => 2021-06-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 15
[patent_figures_cnt] => 25
[patent_no_of_words] => 9247
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 279
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17348174
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/348174 | Method for inducing differentiation of corneal epithelial cells from pluripotent stem cells | Jun 14, 2021 | Issued |