Joel A Sincavage
Supervisory Patent Examiner (ID: 11124, Phone: (571)272-2610 , Office: P/2910 )
Most Active Art Unit | 2911 |
Art Unit(s) | 2911, 2900, 2901, 2910 |
Total Applications | 4082 |
Issued Applications | 4006 |
Pending Applications | 1 |
Abandoned Applications | 75 |
Applications
Application number | Title of the application | Filing Date | Status |
---|---|---|---|
Array
(
[id] => 10785511
[patent_doc_number] => 20160131668
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-05-12
[patent_title] => 'MATERIALS AND METHODS FOR RAPID AND SPECIFIC DETECTION OF COCAINE'
[patent_app_type] => utility
[patent_app_number] => 14/930242
[patent_app_country] => US
[patent_app_date] => 2015-11-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 21
[patent_figures_cnt] => 21
[patent_no_of_words] => 14224
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14930242
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/930242 | Materials and methods for rapid and specific detection of cocaine | Nov 1, 2015 | Issued |
Array
(
[id] => 13168403
[patent_doc_number] => 10100307
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2018-10-16
[patent_title] => Use of a reverse-transcriptase inhibitor in the prevention and treatment of degenerative diseases
[patent_app_type] => utility
[patent_app_number] => 15/520926
[patent_app_country] => US
[patent_app_date] => 2015-10-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 3
[patent_no_of_words] => 3236
[patent_no_of_claims] => 9
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 59
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15520926
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/520926 | Use of a reverse-transcriptase inhibitor in the prevention and treatment of degenerative diseases | Oct 29, 2015 | Issued |
Array
(
[id] => 11799851
[patent_doc_number] => 09540647
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2017-01-10
[patent_title] => 'Methods and compositions for the treatment of cancer'
[patent_app_type] => utility
[patent_app_number] => 14/919448
[patent_app_country] => US
[patent_app_date] => 2015-10-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 99
[patent_figures_cnt] => 79
[patent_no_of_words] => 45017
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 62
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14919448
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/919448 | Methods and compositions for the treatment of cancer | Oct 20, 2015 | Issued |
Array
(
[id] => 11115244
[patent_doc_number] => 20160312216
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-10-27
[patent_title] => 'Dual Targeting siRNA Agents'
[patent_app_type] => utility
[patent_app_number] => 14/885342
[patent_app_country] => US
[patent_app_date] => 2015-10-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 6
[patent_no_of_words] => 50977
[patent_no_of_claims] => 30
[patent_no_of_ind_claims] => 12
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14885342
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/885342 | Dual Targeting siRNA Agents | Oct 15, 2015 | Abandoned |
Array
(
[id] => 11994247
[patent_doc_number] => 20170298402
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-10-19
[patent_title] => 'SELF-LABELING NUCLEIC ACIDS AND METHODS OF USE'
[patent_app_type] => utility
[patent_app_number] => 15/516092
[patent_app_country] => US
[patent_app_date] => 2015-10-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 22
[patent_figures_cnt] => 22
[patent_no_of_words] => 40732
[patent_no_of_claims] => 32
[patent_no_of_ind_claims] => 16
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15516092
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/516092 | SELF-LABELING NUCLEIC ACIDS AND METHODS OF USE | Oct 1, 2015 | Abandoned |
Array
(
[id] => 10744448
[patent_doc_number] => 20160090598
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-03-31
[patent_title] => 'ANTISENSE COMPOUNDS AND USES THEREOF'
[patent_app_type] => utility
[patent_app_number] => 14/871862
[patent_app_country] => US
[patent_app_date] => 2015-09-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 15
[patent_figures_cnt] => 15
[patent_no_of_words] => 34302
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14871862
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/871862 | Antisense compounds and uses thereof | Sep 29, 2015 | Issued |
Array
(
[id] => 11949725
[patent_doc_number] => 20170253877
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-09-07
[patent_title] => 'ALLELE-SPECIFIC THERAPY FOR HUNTINGTON DISEASE HAPLOTYPES'
[patent_app_type] => utility
[patent_app_number] => 15/512013
[patent_app_country] => US
[patent_app_date] => 2015-09-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 20044
[patent_no_of_claims] => 28
[patent_no_of_ind_claims] => 14
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15512013
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/512013 | Allele-specific therapy for huntington disease haplotypes | Sep 17, 2015 | Issued |
Array
(
[id] => 16590789
[patent_doc_number] => 10900039
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-01-26
[patent_title] => Methods for treating aging and skin disorders using nucleic acids targeting Tyr or MMP1
[patent_app_type] => utility
[patent_app_number] => 15/508768
[patent_app_country] => US
[patent_app_date] => 2015-09-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 14
[patent_no_of_words] => 43001
[patent_no_of_claims] => 4
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 141
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15508768
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/508768 | Methods for treating aging and skin disorders using nucleic acids targeting Tyr or MMP1 | Sep 3, 2015 | Issued |
Array
(
[id] => 11256993
[patent_doc_number] => 09481887
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2016-11-01
[patent_title] => 'DNA aptamers for promoting remyelination'
[patent_app_type] => utility
[patent_app_number] => 14/837513
[patent_app_country] => US
[patent_app_date] => 2015-08-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 16
[patent_no_of_words] => 8371
[patent_no_of_claims] => 11
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 15
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14837513
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/837513 | DNA aptamers for promoting remyelination | Aug 26, 2015 | Issued |
Array
(
[id] => 10729881
[patent_doc_number] => 20160076031
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-03-17
[patent_title] => 'PHOSPHOROUS-LINKED OLIGOMERIC COMPOUNDS AND THEIR USE IN GENE MODULATION'
[patent_app_type] => utility
[patent_app_number] => 14/834873
[patent_app_country] => US
[patent_app_date] => 2015-08-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 3
[patent_no_of_words] => 38466
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14834873
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/834873 | Phosphorous-linked oligomeric compounds and their use in gene modulation | Aug 24, 2015 | Issued |
Array
(
[id] => 10762242
[patent_doc_number] => 20160108396
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-04-21
[patent_title] => 'OLIGOMERS TARGETING HEXANUCLEOTIDE REPEAT EXPANSION IN HUMAN C9ORF72 GENE'
[patent_app_type] => utility
[patent_app_number] => 14/826829
[patent_app_country] => US
[patent_app_date] => 2015-08-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 31148
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 5
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14826829
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/826829 | OLIGOMERS TARGETING HEXANUCLEOTIDE REPEAT EXPANSION IN HUMAN C9ORF72 GENE | Aug 13, 2015 | Abandoned |
Array
(
[id] => 11464089
[patent_doc_number] => 09580709
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2017-02-28
[patent_title] => 'Double stranded RNA constructs for aphid control'
[patent_app_type] => utility
[patent_app_number] => 14/825427
[patent_app_country] => US
[patent_app_date] => 2015-08-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 5417
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 60
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14825427
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/825427 | Double stranded RNA constructs for aphid control | Aug 12, 2015 | Issued |
Array
(
[id] => 11004179
[patent_doc_number] => 20160201128
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-07-14
[patent_title] => 'METHODS FOR SELECTING COMPETENT OOCYTES AND COMPETENT EMBRYOS WITH HIGH POTENTIAL FOR PREGNANCY OUTCOME'
[patent_app_type] => utility
[patent_app_number] => 14/808204
[patent_app_country] => US
[patent_app_date] => 2015-07-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 2
[patent_figures_cnt] => 2
[patent_no_of_words] => 10188
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 7
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14808204
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/808204 | METHODS FOR SELECTING COMPETENT OOCYTES AND COMPETENT EMBRYOS WITH HIGH POTENTIAL FOR PREGNANCY OUTCOME | Jul 23, 2015 | Abandoned |
Array
(
[id] => 11822136
[patent_doc_number] => 20170211073
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-07-27
[patent_title] => 'ANTISENSE ANTINEOPLASTIC AGENT'
[patent_app_type] => utility
[patent_app_number] => 15/325278
[patent_app_country] => US
[patent_app_date] => 2015-07-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 25
[patent_figures_cnt] => 25
[patent_no_of_words] => 10718
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15325278
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/325278 | ANTISENSE ANTINEOPLASTIC AGENT | Jul 9, 2015 | Abandoned |
Array
(
[id] => 10744442
[patent_doc_number] => 20160090593
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-03-31
[patent_title] => 'Lipid Formulated Compositions And Methods For Inhibiting Expression Of Transthyretin (TTR)'
[patent_app_type] => utility
[patent_app_number] => 14/789378
[patent_app_country] => US
[patent_app_date] => 2015-07-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 26
[patent_figures_cnt] => 26
[patent_no_of_words] => 46824
[patent_no_of_claims] => 3
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14789378
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/789378 | Lipid Formulated Compositions And Methods For Inhibiting Expression Of Transthyretin (TTR) | Jun 30, 2015 | Abandoned |
Array
(
[id] => 10491602
[patent_doc_number] => 20150376623
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-12-31
[patent_title] => 'ANTISENSE OLIGONUCLEOTIDES DIRECTED AGAINST CONNECTIVE TISSUE GROWTH FACTOR AND USES THEREOF'
[patent_app_type] => utility
[patent_app_number] => 14/753860
[patent_app_country] => US
[patent_app_date] => 2015-06-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 32374
[patent_no_of_claims] => 40
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14753860
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/753860 | Antisense oligonucleotides directed against connective tissue growth factor and uses thereof | Jun 28, 2015 | Issued |
Array
(
[id] => 11663838
[patent_doc_number] => 20170152557
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-06-01
[patent_title] => 'FREE NUCLEIC ACIDS AND MIRNA AS NON-INVASIVE METHOD FOR DETERMINING EMBRYO QUALITY'
[patent_app_type] => utility
[patent_app_number] => 15/321213
[patent_app_country] => US
[patent_app_date] => 2015-06-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 10
[patent_no_of_words] => 23085
[patent_no_of_claims] => 3
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15321213
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/321213 | Free nucleic acids and miRNA as non-invasive method for determining embryo quality | Jun 25, 2015 | Issued |
Array
(
[id] => 11730563
[patent_doc_number] => 20170192006
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-07-06
[patent_title] => 'BIOMARKERS FOR HUMAN MONOCYTE MYELOID0DERIVED SUPPRESOR CELLS'
[patent_app_type] => utility
[patent_app_number] => 15/321894
[patent_app_country] => US
[patent_app_date] => 2015-06-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 15849
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15321894
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/321894 | Biomarkers for human monocyte myeloid-derived suppresor cells | Jun 23, 2015 | Issued |
Array
(
[id] => 10468597
[patent_doc_number] => 20150353613
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-12-10
[patent_title] => 'STABILIZED STAT3 DECOY OLIGONUCLEOTIDES AND USES THEREFORE'
[patent_app_type] => utility
[patent_app_number] => 14/739990
[patent_app_country] => US
[patent_app_date] => 2015-06-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 24
[patent_figures_cnt] => 24
[patent_no_of_words] => 16028
[patent_no_of_claims] => 38
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14739990
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/739990 | STABILIZED STAT3 DECOY OLIGONUCLEOTIDES AND USES THEREFORE | Jun 14, 2015 | Abandoned |
Array
(
[id] => 11729622
[patent_doc_number] => 20170191066
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-07-06
[patent_title] => 'ANTISENSE COMPOUNDS TARGETING APOLIPOPROTEIN E RECEPTOR 2'
[patent_app_type] => utility
[patent_app_number] => 15/315828
[patent_app_country] => US
[patent_app_date] => 2015-06-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22302
[patent_no_of_claims] => 190
[patent_no_of_ind_claims] => 78
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15315828
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/315828 | Antisense compounds targeting apolipoprotein E receptor 2 | Jun 3, 2015 | Issued |