
John B. Sotomayor
Examiner (ID: 12308, Phone: (571)272-6978 , Office: P/3646 )
| Most Active Art Unit | 3662 |
| Art Unit(s) | 2201, 3646, 2202, 3662, 3642, 3641 |
| Total Applications | 2701 |
| Issued Applications | 2481 |
| Pending Applications | 70 |
| Abandoned Applications | 152 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 18221585
[patent_doc_number] => 20230060579
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-03-02
[patent_title] => METHODS FOR CHARACTERIZING COPY NUMBER VARIATION USING PROXIMITY-LITIGATION SEQUENCING
[patent_app_type] => utility
[patent_app_number] => 17/977208
[patent_app_country] => US
[patent_app_date] => 2022-10-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7300
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17977208
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/977208 | Methods for characterizing copy number variation using proximity-litigation sequencing | Oct 30, 2022 | Issued |
Array
(
[id] => 20144214
[patent_doc_number] => 12378545
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-08-05
[patent_title] => Method for nucleic acid depletion
[patent_app_type] => utility
[patent_app_number] => 17/962603
[patent_app_country] => US
[patent_app_date] => 2022-10-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 16
[patent_figures_cnt] => 16
[patent_no_of_words] => 11930
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 102
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17962603
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/962603 | Method for nucleic acid depletion | Oct 9, 2022 | Issued |
Array
(
[id] => 18299748
[patent_doc_number] => 20230109434
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-04-06
[patent_title] => CELL-FREE BIOSENSORS TO DETECT CREATININE, CREATINE, AND SARCOSINE
[patent_app_type] => utility
[patent_app_number] => 17/937968
[patent_app_country] => US
[patent_app_date] => 2022-10-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8068
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 188
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17937968
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/937968 | CELL-FREE BIOSENSORS TO DETECT CREATININE, CREATINE, AND SARCOSINE | Oct 3, 2022 | Pending |
Array
(
[id] => 18295436
[patent_doc_number] => 20230105122
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-04-06
[patent_title] => Error corrected method mitigates systematic error via sequencing DNA data of the surrounding flow cells of the variants on Patterned Flow Cell
[patent_app_type] => utility
[patent_app_number] => 17/959615
[patent_app_country] => US
[patent_app_date] => 2022-10-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 1172
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -3
[patent_words_short_claim] => 122
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17959615
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/959615 | Error corrected method mitigates systematic error via sequencing DNA data of the surrounding flow cells of the variants on Patterned Flow Cell | Oct 3, 2022 | Pending |
Array
(
[id] => 18181676
[patent_doc_number] => 20230042405
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-02-09
[patent_title] => DETECTING MUTATIONS AND PLOIDY IN CHROMOSOMAL SEGMENTS
[patent_app_type] => utility
[patent_app_number] => 17/959543
[patent_app_country] => US
[patent_app_date] => 2022-10-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 99360
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -28
[patent_words_short_claim] => 175
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17959543
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/959543 | DETECTING MUTATIONS AND PLOIDY IN CHROMOSOMAL SEGMENTS | Oct 3, 2022 | Abandoned |
Array
(
[id] => 18575774
[patent_doc_number] => 11732290
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-08-22
[patent_title] => Methods of identifying multiple epitopes in cells
[patent_app_type] => utility
[patent_app_number] => 17/951008
[patent_app_country] => US
[patent_app_date] => 2022-09-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 11
[patent_no_of_words] => 31567
[patent_no_of_claims] => 30
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 25
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17951008
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/951008 | Methods of identifying multiple epitopes in cells | Sep 21, 2022 | Issued |
Array
(
[id] => 18329523
[patent_doc_number] => 11634752
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-04-25
[patent_title] => Kit for split-pool barcoding target molecules that are in or on cells or cell organelles
[patent_app_type] => utility
[patent_app_number] => 17/951003
[patent_app_country] => US
[patent_app_date] => 2022-09-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 11
[patent_no_of_words] => 31565
[patent_no_of_claims] => 26
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 159
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17951003
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/951003 | Kit for split-pool barcoding target molecules that are in or on cells or cell organelles | Sep 21, 2022 | Issued |
Array
(
[id] => 18192892
[patent_doc_number] => 20230046411
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-02-16
[patent_title] => METHODS OF IDENTIFYING MULTIPLE EPITOPES IN CELLS
[patent_app_type] => utility
[patent_app_number] => 17/951013
[patent_app_country] => US
[patent_app_date] => 2022-09-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 31466
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -27
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17951013
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/951013 | Methods of identifying multiple epitopes in cells | Sep 21, 2022 | Issued |
Array
(
[id] => 18451944
[patent_doc_number] => 20230193223
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-22
[patent_title] => NUCLEOTIDE TRANSIENT BINDING FOR SEQUENCING METHODS
[patent_app_type] => utility
[patent_app_number] => 17/932844
[patent_app_country] => US
[patent_app_date] => 2022-09-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 58319
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 81
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17932844
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/932844 | Nucleotide transient binding for sequencing methods | Sep 15, 2022 | Issued |
Array
(
[id] => 18208236
[patent_doc_number] => 20230054494
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-02-23
[patent_title] => METHODS FOR NON-INVASIVE PRENATAL PLOIDY CALLING
[patent_app_type] => utility
[patent_app_number] => 17/945334
[patent_app_country] => US
[patent_app_date] => 2022-09-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 73348
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 149
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17945334
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/945334 | METHODS FOR NON-INVASIVE PRENATAL PLOIDY CALLING | Sep 14, 2022 | Pending |
Array
(
[id] => 18452014
[patent_doc_number] => 20230193293
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-22
[patent_title] => LINEAR COVALENTLY CLOSED VECTORS AND RELATED COMPOSITIONS AND METHODS THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/897498
[patent_app_country] => US
[patent_app_date] => 2022-08-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18003
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 143
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17897498
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/897498 | Linear covalently closed vectors and related compositions and methods thereof | Aug 28, 2022 | Issued |
Array
(
[id] => 18065740
[patent_doc_number] => 20220396827
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-12-15
[patent_title] => SOLID PHASE EXTRACTION MATERIAL AND ITS USE FOR NUCLEIC ACID ENRICHMENT AND DETECTION
[patent_app_type] => utility
[patent_app_number] => 17/822521
[patent_app_country] => US
[patent_app_date] => 2022-08-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6556
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -7
[patent_words_short_claim] => 41
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17822521
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/822521 | Solid phase extraction material and its use for nucleic acid enrichment and detection | Aug 25, 2022 | Issued |
Array
(
[id] => 18718165
[patent_doc_number] => 11795500
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-10-24
[patent_title] => Methods for detecting RNA binding protein complexes
[patent_app_type] => utility
[patent_app_number] => 17/820735
[patent_app_country] => US
[patent_app_date] => 2022-08-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 19
[patent_figures_cnt] => 19
[patent_no_of_words] => 18522
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 76
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17820735
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/820735 | Methods for detecting RNA binding protein complexes | Aug 17, 2022 | Issued |
Array
(
[id] => 18222934
[patent_doc_number] => 20230061928
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-03-02
[patent_title] => COMPOSITIONS AND METHODS FOR DETECTING CIRCULATING TUMOR DNA
[patent_app_type] => utility
[patent_app_number] => 17/819824
[patent_app_country] => US
[patent_app_date] => 2022-08-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19683
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 337
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17819824
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/819824 | Compositions and methods for detecting circulating tumor DNA | Aug 14, 2022 | Issued |
Array
(
[id] => 19249126
[patent_doc_number] => 20240200113
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-06-20
[patent_title] => METHOD AND SYSTEM FOR ENZYMATIC SYNTHESIS OF OLIGONUCLEOTIDES
[patent_app_type] => utility
[patent_app_number] => 17/819610
[patent_app_country] => US
[patent_app_date] => 2022-08-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11131
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17819610
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/819610 | METHOD AND SYSTEM FOR ENZYMATIC SYNTHESIS OF OLIGONUCLEOTIDES | Aug 11, 2022 | Pending |
Array
(
[id] => 20480625
[patent_doc_number] => 12529096
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2026-01-20
[patent_title] => Stabilization and/or compaction of nucleic acid structures
[patent_app_type] => utility
[patent_app_number] => 17/816984
[patent_app_country] => US
[patent_app_date] => 2022-08-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 5
[patent_no_of_words] => 28209
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 60
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17816984
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/816984 | Stabilization and/or compaction of nucleic acid structures | Aug 1, 2022 | Issued |
Array
(
[id] => 18725880
[patent_doc_number] => 20230340113
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-10-26
[patent_title] => CHIMERIC ANTIGEN RECEPTORS (CARs), COMPOSITIONS AND METHODS THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/878339
[patent_app_country] => US
[patent_app_date] => 2022-08-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 48237
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -5
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17878339
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/878339 | CHIMERIC ANTIGEN RECEPTORS (CARs), COMPOSITIONS AND METHODS THEREOF | Jul 31, 2022 | Pending |
Array
(
[id] => 18376336
[patent_doc_number] => 20230151420
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-05-18
[patent_title] => METHODS AND APPARATUS THAT INCREASE SEQUENCING-BY-BINDING EFFICIENCY
[patent_app_type] => utility
[patent_app_number] => 17/876893
[patent_app_country] => US
[patent_app_date] => 2022-07-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 36314
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -30
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17876893
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/876893 | Methods and apparatus that increase sequencing-by-binding efficiency | Jul 28, 2022 | Issued |
Array
(
[id] => 20129420
[patent_doc_number] => 12371724
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-07-29
[patent_title] => Methods for in vitro joining and combinatorial assembly of nucleic acid molecules
[patent_app_type] => utility
[patent_app_number] => 17/877657
[patent_app_country] => US
[patent_app_date] => 2022-07-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 14
[patent_figures_cnt] => 33
[patent_no_of_words] => 20645
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 6
[patent_words_short_claim] => 114
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17877657
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/877657 | Methods for in vitro joining and combinatorial assembly of nucleic acid molecules | Jul 28, 2022 | Issued |
Array
(
[id] => 18153313
[patent_doc_number] => 11566278
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-01-31
[patent_title] => Methods of identifying multiple epitopes in cells
[patent_app_type] => utility
[patent_app_number] => 17/870697
[patent_app_country] => US
[patent_app_date] => 2022-07-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 11
[patent_no_of_words] => 31655
[patent_no_of_claims] => 26
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 100
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17870697
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/870697 | Methods of identifying multiple epitopes in cells | Jul 20, 2022 | Issued |