
Kimberly Chong
Examiner (ID: 12202, Phone: (571)272-3111 , Office: P/1674 )
| Most Active Art Unit | 1635 |
| Art Unit(s) | 1674, 1635, 1636 |
| Total Applications | 1958 |
| Issued Applications | 1138 |
| Pending Applications | 205 |
| Abandoned Applications | 669 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 18844897
[patent_doc_number] => 20230407301
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-12-21
[patent_title] => ANTISENSE OLIGOMER COMPOUNDS
[patent_app_type] => utility
[patent_app_number] => 18/145604
[patent_app_country] => US
[patent_app_date] => 2022-12-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 26679
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -4
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18145604
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/145604 | ANTISENSE OLIGOMER COMPOUNDS | Dec 21, 2022 | Abandoned |
Array
(
[id] => 18879481
[patent_doc_number] => 20240002850
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-01-04
[patent_title] => SIRT1-saRNA Compositions and Methods of Use
[patent_app_type] => utility
[patent_app_number] => 18/086209
[patent_app_country] => US
[patent_app_date] => 2022-12-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 32607
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 52
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18086209
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/086209 | SIRT1-saRNA Compositions and Methods of Use | Dec 20, 2022 | Pending |
Array
(
[id] => 18583146
[patent_doc_number] => 20230265405
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-08-24
[patent_title] => ENGINEERED NUCLEASES AND METHODS OF USE THEREOF
[patent_app_type] => utility
[patent_app_number] => 18/069387
[patent_app_country] => US
[patent_app_date] => 2022-12-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 23790
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -24
[patent_words_short_claim] => 35
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18069387
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/069387 | ENGINEERED NUCLEASES AND METHODS OF USE THEREOF | Dec 20, 2022 | Pending |
Array
(
[id] => 18685152
[patent_doc_number] => 11780869
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-10-10
[patent_title] => Deuterium-stabilised ribonucleic acid (RNA) molecules displaying increased resistance to thermal and enzymatic hydrolysis, aqueous compositions comprising stabilised RNA molecules and methods for making same
[patent_app_type] => utility
[patent_app_number] => 18/080919
[patent_app_country] => US
[patent_app_date] => 2022-12-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 18
[patent_figures_cnt] => 34
[patent_no_of_words] => 11864
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 61
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18080919
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/080919 | Deuterium-stabilised ribonucleic acid (RNA) molecules displaying increased resistance to thermal and enzymatic hydrolysis, aqueous compositions comprising stabilised RNA molecules and methods for making same | Dec 13, 2022 | Issued |
Array
(
[id] => 20357562
[patent_doc_number] => 12473549
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-11-18
[patent_title] => Splicing-dependent transcriptional gene silencing or activation
[patent_app_type] => utility
[patent_app_number] => 18/065086
[patent_app_country] => US
[patent_app_date] => 2022-12-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 55
[patent_figures_cnt] => 98
[patent_no_of_words] => 22738
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 141
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18065086
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/065086 | Splicing-dependent transcriptional gene silencing or activation | Dec 12, 2022 | Issued |
Array
(
[id] => 20357562
[patent_doc_number] => 12473549
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-11-18
[patent_title] => Splicing-dependent transcriptional gene silencing or activation
[patent_app_type] => utility
[patent_app_number] => 18/065086
[patent_app_country] => US
[patent_app_date] => 2022-12-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 55
[patent_figures_cnt] => 98
[patent_no_of_words] => 22738
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 141
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18065086
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/065086 | Splicing-dependent transcriptional gene silencing or activation | Dec 12, 2022 | Issued |
Array
(
[id] => 18469204
[patent_doc_number] => 20230203488
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-29
[patent_title] => MODIFIED RIBONUCLEIC ACIDS AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 18/075085
[patent_app_country] => US
[patent_app_date] => 2022-12-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 37159
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -25
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18075085
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/075085 | Modified ribonucleic acids and uses thereof | Dec 4, 2022 | Issued |
Array
(
[id] => 18817836
[patent_doc_number] => 20230392176
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-12-07
[patent_title] => Method of purifying mRNA using substrate dependent ribozyme and solid-support attachment tag
[patent_app_type] => utility
[patent_app_number] => 18/072674
[patent_app_country] => US
[patent_app_date] => 2022-11-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4415
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -2
[patent_words_short_claim] => 157
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18072674
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/072674 | Method of purifying mRNA using substrate dependent ribozyme and solid-support attachment tag | Nov 29, 2022 | Pending |
Array
(
[id] => 19083378
[patent_doc_number] => 20240110179
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-04-04
[patent_title] => SYSTEMS AND METHODS FOR TREATING ALPHA 1-ANTITRYPSIN (A1AT) DEFICIENCY
[patent_app_type] => utility
[patent_app_number] => 18/059213
[patent_app_country] => US
[patent_app_date] => 2022-11-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 80907
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18059213
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/059213 | SYSTEMS AND METHODS FOR TREATING ALPHA 1-ANTITRYPSIN (A1AT) DEFICIENCY | Nov 27, 2022 | Pending |
Array
(
[id] => 19083378
[patent_doc_number] => 20240110179
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-04-04
[patent_title] => SYSTEMS AND METHODS FOR TREATING ALPHA 1-ANTITRYPSIN (A1AT) DEFICIENCY
[patent_app_type] => utility
[patent_app_number] => 18/059213
[patent_app_country] => US
[patent_app_date] => 2022-11-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 80907
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18059213
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/059213 | SYSTEMS AND METHODS FOR TREATING ALPHA 1-ANTITRYPSIN (A1AT) DEFICIENCY | Nov 27, 2022 | Pending |
Array
(
[id] => 18452008
[patent_doc_number] => 20230193287
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-22
[patent_title] => Nucleic Acid Compounds for Binding Growth Differentiation Factor 11
[patent_app_type] => utility
[patent_app_number] => 18/056382
[patent_app_country] => US
[patent_app_date] => 2022-11-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14956
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18056382
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/056382 | Nucleic Acid Compounds for Binding Growth Differentiation Factor 11 | Nov 16, 2022 | Pending |
Array
(
[id] => 18467082
[patent_doc_number] => 20230201363
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-29
[patent_title] => COMPOSITIONS AND METHODS OF TREATING MUSCLE ATROPHY AND MYOTONIC DYSTROPHY
[patent_app_type] => utility
[patent_app_number] => 18/056664
[patent_app_country] => US
[patent_app_date] => 2022-11-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 62248
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 43
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18056664
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/056664 | Compositions and methods of treating muscle atrophy and myotonic dystrophy | Nov 16, 2022 | Issued |
Array
(
[id] => 18466961
[patent_doc_number] => 20230201241
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-29
[patent_title] => COMPOSITIONS COMPRISING CIRCULAR POLYRIBONUCLEOTIDES AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/988007
[patent_app_country] => US
[patent_app_date] => 2022-11-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 53907
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -26
[patent_words_short_claim] => 84
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17988007
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/988007 | Compositions comprising circular polyribonucleotides and uses thereof | Nov 15, 2022 | Issued |
Array
(
[id] => 18649793
[patent_doc_number] => 20230295614
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-09-21
[patent_title] => METHODS AND COMPOSITIONS FOR THE ADAR-MEDIATED EDITING OF ARGININOSUCCINATE LYASE (ASL)
[patent_app_type] => utility
[patent_app_number] => 17/986023
[patent_app_country] => US
[patent_app_date] => 2022-11-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 48392
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -7
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17986023
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/986023 | METHODS AND COMPOSITIONS FOR THE ADAR-MEDIATED EDITING OF ARGININOSUCCINATE LYASE (ASL) | Nov 13, 2022 | Pending |
Array
(
[id] => 18469214
[patent_doc_number] => 20230203498
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-29
[patent_title] => SINGLE-STRANDED OLIGONUCLEOTIDE
[patent_app_type] => utility
[patent_app_number] => 18/054660
[patent_app_country] => US
[patent_app_date] => 2022-11-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 52765
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -38
[patent_words_short_claim] => 258
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18054660
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/054660 | SINGLE-STRANDED OLIGONUCLEOTIDE | Nov 10, 2022 | Pending |
Array
(
[id] => 18739935
[patent_doc_number] => 20230348904
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-11-02
[patent_title] => SHORT INTERFERING NUCLEIC ACID (siNA) COMPOSITIONS
[patent_app_type] => utility
[patent_app_number] => 17/984486
[patent_app_country] => US
[patent_app_date] => 2022-11-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 44361
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17984486
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/984486 | Short interfering nucleic acid (siNA) compositions | Nov 9, 2022 | Issued |
Array
(
[id] => 20372692
[patent_doc_number] => 12480118
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-11-25
[patent_title] => Treatment of Fuchs' endothelial corneal dystrophy
[patent_app_type] => utility
[patent_app_number] => 18/053559
[patent_app_country] => US
[patent_app_date] => 2022-11-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 19
[patent_figures_cnt] => 55
[patent_no_of_words] => 34335
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 43
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18053559
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/053559 | Treatment of Fuchs' endothelial corneal dystrophy | Nov 7, 2022 | Issued |
Array
(
[id] => 19638165
[patent_doc_number] => 12168766
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-12-17
[patent_title] => Modulators of APOL1 expression
[patent_app_type] => utility
[patent_app_number] => 18/053447
[patent_app_country] => US
[patent_app_date] => 2022-11-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 61085
[patent_no_of_claims] => 12
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 46
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18053447
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/053447 | Modulators of APOL1 expression | Nov 7, 2022 | Issued |
Array
(
[id] => 18612663
[patent_doc_number] => 20230279395
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-09-07
[patent_title] => COMPOSITIONS AND METHODS OF TREATING FACIOSCAPULOHUMERAL MUSCULAR DYSTROPHY
[patent_app_type] => utility
[patent_app_number] => 18/052900
[patent_app_country] => US
[patent_app_date] => 2022-11-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 47233
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 77
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18052900
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/052900 | Compositions and methods of treating Facioscapulohumeral muscular dystrophy | Nov 3, 2022 | Issued |
Array
(
[id] => 19474079
[patent_doc_number] => 12104156
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-10-01
[patent_title] => Compositions and methods of treating facioscapulohumeral muscular dystrophy
[patent_app_type] => utility
[patent_app_number] => 18/052899
[patent_app_country] => US
[patent_app_date] => 2022-11-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 31
[patent_figures_cnt] => 42
[patent_no_of_words] => 47345
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 169
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18052899
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/052899 | Compositions and methods of treating facioscapulohumeral muscular dystrophy | Nov 3, 2022 | Issued |