
Lance W. Rider
Examiner (ID: 18260, Phone: (571)270-1337 , Office: P/1618 )
| Most Active Art Unit | 1618 |
| Art Unit(s) | 1618 |
| Total Applications | 662 |
| Issued Applications | 191 |
| Pending Applications | 1 |
| Abandoned Applications | 470 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 17577036
[patent_doc_number] => 20220133891
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-05-05
[patent_title] => HEMOSTATIC MICROSPHERES
[patent_app_type] => utility
[patent_app_number] => 17/574229
[patent_app_country] => US
[patent_app_date] => 2022-01-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17079
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17574229
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/574229 | HEMOSTATIC MICROSPHERES | Jan 11, 2022 | Abandoned |
Array
(
[id] => 17539920
[patent_doc_number] => 11305024
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-04-19
[patent_title] => Cross-linked polymer modified nanoparticles
[patent_app_type] => utility
[patent_app_number] => 17/398954
[patent_app_country] => US
[patent_app_date] => 2021-08-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 38
[patent_figures_cnt] => 119
[patent_no_of_words] => 29281
[patent_no_of_claims] => 30
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 95
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17398954
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/398954 | Cross-linked polymer modified nanoparticles | Aug 9, 2021 | Issued |
Array
(
[id] => 18517667
[patent_doc_number] => 11707538
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-07-25
[patent_title] => Methods and devices to generate [F-18]triflyl fluoride and other [F-18] sulfonyl fluorides
[patent_app_type] => utility
[patent_app_number] => 17/150186
[patent_app_country] => US
[patent_app_date] => 2021-01-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 5
[patent_figures_cnt] => 11
[patent_no_of_words] => 4790
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 162
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17150186
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/150186 | Methods and devices to generate [F-18]triflyl fluoride and other [F-18] sulfonyl fluorides | Jan 14, 2021 | Issued |
Array
(
[id] => 16596478
[patent_doc_number] => 20210023009
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-01-28
[patent_title] => NANO-SIZED PARTICLES COMPRISING MULTI-HEADED AMPHIPHILES FOR TARGETED DRUG DELIVERY
[patent_app_type] => utility
[patent_app_number] => 17/071418
[patent_app_country] => US
[patent_app_date] => 2020-10-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22517
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -35
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17071418
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/071418 | NANO-SIZED PARTICLES COMPRISING MULTI-HEADED AMPHIPHILES FOR TARGETED DRUG DELIVERY | Oct 14, 2020 | Abandoned |
Array
(
[id] => 16824096
[patent_doc_number] => 20210139389
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-13
[patent_title] => AUTOMATIC PROCESS PLATFORM FOR THE PRODUCTION OF ASTATINE-211 [ AT 211] RADIOPHARMACEUTICALS
[patent_app_type] => utility
[patent_app_number] => 17/060810
[patent_app_country] => US
[patent_app_date] => 2020-10-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8647
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -23
[patent_words_short_claim] => 119
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17060810
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/060810 | Automatic process platform for the production of astatine-211 [At-211]-radiopharmaceuticals | Sep 30, 2020 | Issued |
Array
(
[id] => 16991943
[patent_doc_number] => 20210230363
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-07-29
[patent_title] => DERIVATIVES OF 1,3-PROPANEDIOL
[patent_app_type] => utility
[patent_app_number] => 17/014055
[patent_app_country] => US
[patent_app_date] => 2020-09-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7041
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17014055
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/014055 | DERIVATIVES OF 1,3-PROPANEDIOL | Sep 7, 2020 | Abandoned |
Array
(
[id] => 17458825
[patent_doc_number] => 20220072129
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-03-10
[patent_title] => NOBLE METAL NANOPARTICLES WITH RADIAL PORES AND METHODS FOR ANTITUMOR TREATMENTS
[patent_app_type] => utility
[patent_app_number] => 17/012820
[patent_app_country] => US
[patent_app_date] => 2020-09-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6567
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17012820
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/012820 | Noble metal nanoparticles with radial pores | Sep 3, 2020 | Issued |
Array
(
[id] => 16236716
[patent_doc_number] => 20200253950
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-08-13
[patent_title] => Pharmaceutical Formulations Comprising CCR3 Antagonists
[patent_app_type] => utility
[patent_app_number] => 16/861473
[patent_app_country] => US
[patent_app_date] => 2020-04-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8262
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16861473
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/861473 | Pharmaceutical formulations comprising CCR3 antagonists | Apr 28, 2020 | Issued |
Array
(
[id] => 18780181
[patent_doc_number] => 11821892
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-11-21
[patent_title] => Nanobubbles
[patent_app_type] => utility
[patent_app_number] => 16/851130
[patent_app_country] => US
[patent_app_date] => 2020-04-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 35
[patent_figures_cnt] => 53
[patent_no_of_words] => 18324
[patent_no_of_claims] => 6
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 156
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16851130
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/851130 | Nanobubbles | Apr 16, 2020 | Issued |
Array
(
[id] => 16221342
[patent_doc_number] => 20200246458
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-08-06
[patent_title] => METHOD FOR TREATING CANCER BASED ON METALLOFULLERENE MONOCRYSTALLINE NANOPARTICLES THAT SPECIFICALLY DISRUPT TUMOR BLOOD VESSELS
[patent_app_type] => utility
[patent_app_number] => 16/837953
[patent_app_country] => US
[patent_app_date] => 2020-04-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4573
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 177
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16837953
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/837953 | METHOD FOR TREATING CANCER BASED ON METALLOFULLERENE MONOCRYSTALLINE NANOPARTICLES THAT SPECIFICALLY DISRUPT TUMOR BLOOD VESSELS | Mar 31, 2020 | Abandoned |
Array
(
[id] => 15738541
[patent_doc_number] => 20200108158
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-04-09
[patent_title] => TARGETED CONTRAST AGENTS AND METHODS FOR TARGETING CONTRAST AGENTS
[patent_app_type] => utility
[patent_app_number] => 16/689718
[patent_app_country] => US
[patent_app_date] => 2019-11-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12453
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16689718
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/689718 | TARGETED CONTRAST AGENTS AND METHODS FOR TARGETING CONTRAST AGENTS | Nov 19, 2019 | Abandoned |
Array
(
[id] => 15342329
[patent_doc_number] => 20200009056
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-01-09
[patent_title] => ORGANIC COMPOUNDS
[patent_app_type] => utility
[patent_app_number] => 16/576217
[patent_app_country] => US
[patent_app_date] => 2019-09-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4195
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 124
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16576217
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/576217 | ORGANIC COMPOUNDS | Sep 18, 2019 | Abandoned |
Array
(
[id] => 16009105
[patent_doc_number] => 20200179395
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-06-11
[patent_title] => PHARMACEUTICAL COMPOSITIONS
[patent_app_type] => utility
[patent_app_number] => 16/574367
[patent_app_country] => US
[patent_app_date] => 2019-09-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 42834
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -29
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16574367
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/574367 | PHARMACEUTICAL COMPOSITIONS | Sep 17, 2019 | Abandoned |
Array
(
[id] => 15797339
[patent_doc_number] => 20200121812
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-04-23
[patent_title] => Combination of Deuterated Levodopa With Carbidopa and Opicapone For The Treatment of Parkinson's Disease
[patent_app_type] => utility
[patent_app_number] => 16/555915
[patent_app_country] => US
[patent_app_date] => 2019-08-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18502
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 17
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16555915
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/555915 | Combination of Deuterated Levodopa With Carbidopa and Opicapone For The Treatment of Parkinson's Disease | Aug 28, 2019 | Abandoned |
Array
(
[id] => 15114231
[patent_doc_number] => 20190343748
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-11-14
[patent_title] => VERSATILE TOPICAL DRUG DELIVERY VEHICLE AND MULTIFACTORIAL TISSUE MOISTURIZER THAT PROVIDES MUCOSAL AND SKIN BARRIER RESTORATION
[patent_app_type] => utility
[patent_app_number] => 16/518434
[patent_app_country] => US
[patent_app_date] => 2019-07-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7890
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 317
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16518434
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/518434 | VERSATILE TOPICAL DRUG DELIVERY VEHICLE AND MULTIFACTORIAL TISSUE MOISTURIZER THAT PROVIDES MUCOSAL AND SKIN BARRIER RESTORATION | Jul 21, 2019 | Abandoned |
Array
(
[id] => 17065913
[patent_doc_number] => 20210268128
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-09-02
[patent_title] => FLUORESCENT NANOPARTICLES AND IMAGING USES
[patent_app_type] => utility
[patent_app_number] => 17/253959
[patent_app_country] => US
[patent_app_date] => 2019-07-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15141
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17253959
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/253959 | FLUORESCENT NANOPARTICLES AND IMAGING USES | Jul 8, 2019 | Abandoned |
Array
(
[id] => 15020979
[patent_doc_number] => 20190321494
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-10-24
[patent_title] => POLYMALIC ACID BASED NANOCONJUGATES FOR IMAGING
[patent_app_type] => utility
[patent_app_number] => 16/434545
[patent_app_country] => US
[patent_app_date] => 2019-06-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16373
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 238
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16434545
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/434545 | POLYMALIC ACID BASED NANOCONJUGATES FOR IMAGING | Jun 6, 2019 | Abandoned |
Array
(
[id] => 14716035
[patent_doc_number] => 20190249081
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-08-15
[patent_title] => MORPHOLOGICALLY AND SIZE UNIFORM MONODISPERSE PARTICLES AND THEIR SHAPE-DIRECTED SELF-ASSEMBLY
[patent_app_type] => utility
[patent_app_number] => 16/396058
[patent_app_country] => US
[patent_app_date] => 2019-04-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13020
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 98
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16396058
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/396058 | MORPHOLOGICALLY AND SIZE UNIFORM MONODISPERSE PARTICLES AND THEIR SHAPE-DIRECTED SELF-ASSEMBLY | Apr 25, 2019 | Abandoned |
Array
(
[id] => 14655747
[patent_doc_number] => 20190235002
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-08-01
[patent_title] => Quantum Converting Nanoparticles as In Vivo and In Situ Optical Electric Field Sensors
[patent_app_type] => utility
[patent_app_number] => 16/381874
[patent_app_country] => US
[patent_app_date] => 2019-04-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 4520
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 90
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16381874
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/381874 | Quantum Converting Nanoparticles as In Vivo and In Situ Optical Electric Field Sensors | Apr 10, 2019 | Abandoned |
Array
(
[id] => 18719272
[patent_doc_number] => 11796610
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-10-24
[patent_title] => Compositions as molecular tags for hyperpolarization NMR and magnetic resonance and methods of making and using same
[patent_app_type] => utility
[patent_app_number] => 16/298621
[patent_app_country] => US
[patent_app_date] => 2019-03-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 15
[patent_no_of_words] => 10459
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 52
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16298621
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/298621 | Compositions as molecular tags for hyperpolarization NMR and magnetic resonance and methods of making and using same | Mar 10, 2019 | Issued |