
Laura B. Goddard
Examiner (ID: 8860)
| Most Active Art Unit | 1642 |
| Art Unit(s) | 1642 |
| Total Applications | 1750 |
| Issued Applications | 727 |
| Pending Applications | 176 |
| Abandoned Applications | 881 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 16629026
[patent_doc_number] => 20210047679
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-02-18
[patent_title] => DETERMINATION OF BASE MODIFICATIONS OF NUCLEIC ACIDS
[patent_app_type] => utility
[patent_app_number] => 16/995607
[patent_app_country] => US
[patent_app_date] => 2020-08-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 63763
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16995607
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/995607 | Determination of base modifications of nucleic acids | Aug 16, 2020 | Issued |
Array
(
[id] => 20115070
[patent_doc_number] => 12364754
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-07-22
[patent_title] => Methods for treating VEGF-expressing cancer using preformed nanoparticle complexes comprising albumin-bound paclitaxel and bevacizumab
[patent_app_type] => utility
[patent_app_number] => 16/992229
[patent_app_country] => US
[patent_app_date] => 2020-08-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 20
[patent_no_of_words] => 2310
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 41
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16992229
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/992229 | Methods for treating VEGF-expressing cancer using preformed nanoparticle complexes comprising albumin-bound paclitaxel and bevacizumab | Aug 12, 2020 | Issued |
Array
(
[id] => 16451067
[patent_doc_number] => 20200360493
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-19
[patent_title] => Compositions and Methods for Treating Cancer with Arginine Depletion and Immuno Oncology Agents
[patent_app_type] => utility
[patent_app_number] => 16/983635
[patent_app_country] => US
[patent_app_date] => 2020-08-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13853
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -42
[patent_words_short_claim] => 15
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16983635
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/983635 | Compositions and Methods for Treating Cancer with Arginine Depletion and Immuno Oncology Agents | Aug 2, 2020 | Abandoned |
Array
(
[id] => 17838906
[patent_doc_number] => 20220276211
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-09-01
[patent_title] => METHOD FOR DIRECTLY DETECTING PATHOGENIC STRAIN HAVING RESISTANCE TO BETA-LACTAM ANTIBIOTICS
[patent_app_type] => utility
[patent_app_number] => 17/632110
[patent_app_country] => US
[patent_app_date] => 2020-08-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8863
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 95
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17632110
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/632110 | METHOD FOR DIRECTLY DETECTING PATHOGENIC STRAIN HAVING RESISTANCE TO BETA-LACTAM ANTIBIOTICS | Aug 2, 2020 | Pending |
Array
(
[id] => 16438360
[patent_doc_number] => 20200355686
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-12
[patent_title] => MONOCLONAL ANTIBODY FOR PREDICTING TAMOXIFEN RESPONSE IN BREAST CANCER PATIENTS
[patent_app_type] => utility
[patent_app_number] => 16/942373
[patent_app_country] => US
[patent_app_date] => 2020-07-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9098
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 40
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16942373
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/942373 | MONOCLONAL ANTIBODY FOR PREDICTING TAMOXIFEN RESPONSE IN BREAST CANCER PATIENTS | Jul 28, 2020 | Abandoned |
Array
(
[id] => 17790472
[patent_doc_number] => 20220249563
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-08-11
[patent_title] => ANTI-DLL3 CHIMERIC ANTIGEN RECEPTORS AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/618642
[patent_app_country] => US
[patent_app_date] => 2020-07-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22965
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -67
[patent_words_short_claim] => 33
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17618642
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/618642 | Anti-DLL3 chimeric antigen receptors and uses thereof | Jul 16, 2020 | Issued |
Array
(
[id] => 18590418
[patent_doc_number] => 11739302
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-08-29
[patent_title] => Engineered vaccinia virus
[patent_app_type] => utility
[patent_app_number] => 16/926803
[patent_app_country] => US
[patent_app_date] => 2020-07-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 28
[patent_no_of_words] => 13031
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 79
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16926803
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/926803 | Engineered vaccinia virus | Jul 12, 2020 | Issued |
Array
(
[id] => 16727880
[patent_doc_number] => 20210095027
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-04-01
[patent_title] => BISPECIFIC ANTIBODIES THAT BIND CD20 AND CD3
[patent_app_type] => utility
[patent_app_number] => 16/926518
[patent_app_country] => US
[patent_app_date] => 2020-07-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19690
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 17
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16926518
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/926518 | BISPECIFIC ANTIBODIES THAT BIND CD20 AND CD3 | Jul 9, 2020 | Abandoned |
Array
(
[id] => 17829977
[patent_doc_number] => 20220267281
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-08-25
[patent_title] => UNSATURATED HETEROCYCLOALKYL AND HETEROAROMATIC ACYL HYDRAZONE LINKERS, METHODS AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/618248
[patent_app_country] => US
[patent_app_date] => 2020-06-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 26760
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -48
[patent_words_short_claim] => 185
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17618248
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/618248 | UNSATURATED HETEROCYCLOALKYL AND HETEROAROMATIC ACYL HYDRAZONE LINKERS, METHODS AND USES THEREOF | Jun 11, 2020 | Pending |
Array
(
[id] => 16514207
[patent_doc_number] => 20200393465
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-12-17
[patent_title] => MARKERS, METHODS AND SYSTEMS FOR IDENTIFYING CELL POPULATIONS, DIAGNOSING, MONITORING, PREDICTING AND TREATING CONDITIONS
[patent_app_type] => utility
[patent_app_number] => 16/899476
[patent_app_country] => US
[patent_app_date] => 2020-06-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24773
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 145
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16899476
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/899476 | Markers, methods and systems for identifying cell populations, diagnosing, monitoring, predicting and treating conditions | Jun 10, 2020 | Issued |
Array
(
[id] => 17775079
[patent_doc_number] => 20220241428
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-08-04
[patent_title] => MACROPHAGE SPECIFIC ENGAGER COMPOSITIONS AND METHODS OF USE THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/618349
[patent_app_country] => US
[patent_app_date] => 2020-06-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 34189
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -68
[patent_words_short_claim] => 18
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17618349
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/618349 | MACROPHAGE SPECIFIC ENGAGER COMPOSITIONS AND METHODS OF USE THEREOF | Jun 10, 2020 | Abandoned |
Array
(
[id] => 18384533
[patent_doc_number] => 11655305
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-05-23
[patent_title] => Treatment of metastatic breast cancer
[patent_app_type] => utility
[patent_app_number] => 16/890176
[patent_app_country] => US
[patent_app_date] => 2020-06-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 10
[patent_no_of_words] => 37744
[patent_no_of_claims] => 2
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 136
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16890176
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/890176 | Treatment of metastatic breast cancer | Jun 1, 2020 | Issued |
Array
(
[id] => 17720474
[patent_doc_number] => 20220213194
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-07-07
[patent_title] => CANCER TREATMENT
[patent_app_type] => utility
[patent_app_number] => 17/610897
[patent_app_country] => US
[patent_app_date] => 2020-05-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24466
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -27
[patent_words_short_claim] => 37
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17610897
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/610897 | CANCER TREATMENT | May 14, 2020 | Abandoned |
Array
(
[id] => 16656092
[patent_doc_number] => 20210052728
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-02-25
[patent_title] => ANTI-ANGIOGENESIS THERAPY FOR THE TREATMENT OF OVARIAN CANCER
[patent_app_type] => utility
[patent_app_number] => 15/930798
[patent_app_country] => US
[patent_app_date] => 2020-05-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 32023
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 99
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15930798
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/930798 | ANTI-ANGIOGENESIS THERAPY FOR THE TREATMENT OF OVARIAN CANCER | May 12, 2020 | Abandoned |
Array
(
[id] => 16466800
[patent_doc_number] => 20200368337
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-26
[patent_title] => SHARED NEOANTIGENS
[patent_app_type] => utility
[patent_app_number] => 16/859252
[patent_app_country] => US
[patent_app_date] => 2020-04-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 65510
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -29
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16859252
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/859252 | SHARED NEOANTIGENS | Apr 26, 2020 | Pending |
Array
(
[id] => 16221327
[patent_doc_number] => 20200246443
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-08-06
[patent_title] => THERAPEUTIC CANCER VACCINE TARGETED TO HAAH (ASPARTYL-[ASPARAGINYL]-BETA-HYDROXYLASE)
[patent_app_type] => utility
[patent_app_number] => 16/856319
[patent_app_country] => US
[patent_app_date] => 2020-04-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10370
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -8
[patent_words_short_claim] => 34
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16856319
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/856319 | THERAPEUTIC CANCER VACCINE TARGETED TO HAAH (ASPARTYL-[ASPARAGINYL]-BETA-HYDROXYLASE) | Apr 22, 2020 | Abandoned |
Array
(
[id] => 19226921
[patent_doc_number] => 12006555
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-06-11
[patent_title] => Method to determine responsiveness of cancer to epidermal growth factor receptor targeting treatments
[patent_app_type] => utility
[patent_app_number] => 16/854654
[patent_app_country] => US
[patent_app_date] => 2020-04-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 23
[patent_figures_cnt] => 29
[patent_no_of_words] => 43310
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 276
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16854654
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/854654 | Method to determine responsiveness of cancer to epidermal growth factor receptor targeting treatments | Apr 20, 2020 | Issued |
Array
(
[id] => 16336766
[patent_doc_number] => 10787713
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-09-29
[patent_title] => Mutations of the PIK3CA gene in human cancers
[patent_app_type] => utility
[patent_app_number] => 16/853230
[patent_app_country] => US
[patent_app_date] => 2020-04-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 5
[patent_no_of_words] => 6653
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 124
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16853230
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/853230 | Mutations of the PIK3CA gene in human cancers | Apr 19, 2020 | Issued |
Array
(
[id] => 18274645
[patent_doc_number] => 11613576
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-03-28
[patent_title] => Trispecific binding proteins, methods, and uses thereof
[patent_app_type] => utility
[patent_app_number] => 16/843792
[patent_app_country] => US
[patent_app_date] => 2020-04-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 52
[patent_figures_cnt] => 77
[patent_no_of_words] => 93858
[patent_no_of_claims] => 29
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 342
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16843792
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/843792 | Trispecific binding proteins, methods, and uses thereof | Apr 7, 2020 | Issued |
Array
(
[id] => 16437139
[patent_doc_number] => 20200354465
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-12
[patent_title] => Methods Related to Alemtuzumab
[patent_app_type] => utility
[patent_app_number] => 16/840293
[patent_app_country] => US
[patent_app_date] => 2020-04-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8103
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -2
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16840293
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/840293 | Methods Related to Alemtuzumab | Apr 2, 2020 | Abandoned |