
Marianne Dibrino
Examiner (ID: 11117)
| Most Active Art Unit | 1644 |
| Art Unit(s) | 1644, 1641 |
| Total Applications | 1191 |
| Issued Applications | 346 |
| Pending Applications | 244 |
| Abandoned Applications | 626 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 16405415
[patent_doc_number] => 10813952
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-10-27
[patent_title] => NK cells with an increased antibody-dependent cellular toxicity (ADCC) against tumors
[patent_app_type] => utility
[patent_app_number] => 15/525921
[patent_app_country] => US
[patent_app_date] => 2015-11-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 10
[patent_figures_cnt] => 17
[patent_no_of_words] => 14339
[patent_no_of_claims] => 6
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 121
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15525921
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/525921 | NK cells with an increased antibody-dependent cellular toxicity (ADCC) against tumors | Nov 12, 2015 | Issued |
Array
(
[id] => 12029583
[patent_doc_number] => 20170319683
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-11-09
[patent_title] => 'Methods of Selecting T cell Line and Donor Thereof for Adoptive Cellular Therapy'
[patent_app_type] => utility
[patent_app_number] => 15/523544
[patent_app_country] => US
[patent_app_date] => 2015-11-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 1
[patent_figures_cnt] => 1
[patent_no_of_words] => 17454
[patent_no_of_claims] => 106
[patent_no_of_ind_claims] => 34
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15523544
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/523544 | Methods of selecting T cell line and donor thereof for adoptive cellular therapy | Nov 3, 2015 | Issued |
Array
(
[id] => 10678067
[patent_doc_number] => 20160024212
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-01-28
[patent_title] => 'Humanized Anti-HLA-DR Antibodies'
[patent_app_type] => utility
[patent_app_number] => 14/878715
[patent_app_country] => US
[patent_app_date] => 2015-10-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 28
[patent_figures_cnt] => 28
[patent_no_of_words] => 30370
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14878715
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/878715 | Humanized Anti-HLA-DR Antibodies | Oct 7, 2015 | Abandoned |
Array
(
[id] => 12770038
[patent_doc_number] => 20180148514
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-05-31
[patent_title] => MULTIVALENT MEDITOPES, MEDITOPE-BINDING ANTIBODIES AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 15/516208
[patent_app_country] => US
[patent_app_date] => 2015-10-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 57612
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15516208
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/516208 | MULTIVALENT MEDITOPES, MEDITOPE-BINDING ANTIBODIES AND USES THEREOF | Oct 1, 2015 | Abandoned |
Array
(
[id] => 16277037
[patent_doc_number] => 10760054
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-09-01
[patent_title] => Natural killer cells and methods for enhancing viability, proliferation and cytotoxicity of same following cryopreservation
[patent_app_type] => utility
[patent_app_number] => 14/847982
[patent_app_country] => US
[patent_app_date] => 2015-09-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 10
[patent_no_of_words] => 4719
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 67
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14847982
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/847982 | Natural killer cells and methods for enhancing viability, proliferation and cytotoxicity of same following cryopreservation | Sep 7, 2015 | Issued |
Array
(
[id] => 11957353
[patent_doc_number] => 20170261505
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-09-14
[patent_title] => 'METHOD AND KIT FOR THE PREDICTIVE PROGNOSIS OF RESPONSIVENESS TO TREATMENTS OF AUTOIMMUNE DISEASES'
[patent_app_type] => utility
[patent_app_number] => 15/511624
[patent_app_country] => US
[patent_app_date] => 2015-09-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 11761
[patent_no_of_claims] => 31
[patent_no_of_ind_claims] => 6
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15511624
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/511624 | METHOD AND KIT FOR THE PREDICTIVE PROGNOSIS OF RESPONSIVENESS TO TREATMENTS OF AUTOIMMUNE DISEASES | Sep 6, 2015 | Abandoned |
Array
(
[id] => 16735868
[patent_doc_number] => 10961506
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-03-30
[patent_title] => Soluble antibody complexes for T cell or NK cell activation and expansion
[patent_app_type] => utility
[patent_app_number] => 14/844717
[patent_app_country] => US
[patent_app_date] => 2015-09-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 7
[patent_no_of_words] => 5420
[patent_no_of_claims] => 5
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 80
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14844717
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/844717 | Soluble antibody complexes for T cell or NK cell activation and expansion | Sep 2, 2015 | Issued |
Array
(
[id] => 10763276
[patent_doc_number] => 20160109431
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-04-21
[patent_title] => 'Development Of Natural Killer Cells And Functional Natural Killer Cell Lines'
[patent_app_type] => utility
[patent_app_number] => 14/834175
[patent_app_country] => US
[patent_app_date] => 2015-08-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 6
[patent_no_of_words] => 13016
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14834175
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/834175 | Development Of Natural Killer Cells And Functional Natural Killer Cell Lines | Aug 23, 2015 | Abandoned |
Array
(
[id] => 10489732
[patent_doc_number] => 20150374754
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-12-31
[patent_title] => 'EXPANDED NK CELLS'
[patent_app_type] => utility
[patent_app_number] => 14/830758
[patent_app_country] => US
[patent_app_date] => 2015-08-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 8
[patent_no_of_words] => 7240
[patent_no_of_claims] => 10
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14830758
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/830758 | Expanded NK cells | Aug 19, 2015 | Issued |
Array
(
[id] => 10678003
[patent_doc_number] => 20160024148
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-01-28
[patent_title] => 'METHOD FOR AFFINITY PURIFICATION'
[patent_app_type] => utility
[patent_app_number] => 14/820446
[patent_app_country] => US
[patent_app_date] => 2015-08-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 4
[patent_no_of_words] => 8666
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14820446
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/820446 | METHOD FOR AFFINITY PURIFICATION | Aug 5, 2015 | Abandoned |
Array
(
[id] => 10435715
[patent_doc_number] => 20150320728
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-11-12
[patent_title] => 'TOLEROGENIC SYNTHETIC NANOCARRIERS TO REDUCE ANTIBODY RESPONSES'
[patent_app_type] => utility
[patent_app_number] => 14/810442
[patent_app_country] => US
[patent_app_date] => 2015-07-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 6
[patent_figures_cnt] => 6
[patent_no_of_words] => 38654
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 9
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14810442
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/810442 | TOLEROGENIC SYNTHETIC NANOCARRIERS TO REDUCE ANTIBODY RESPONSES | Jul 26, 2015 | Abandoned |
Array
(
[id] => 10412684
[patent_doc_number] => 20150297693
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-10-22
[patent_title] => 'PEPTIDE INHIBITORS FOR MEDIATING STRESS RESPONSES'
[patent_app_type] => utility
[patent_app_number] => 14/754835
[patent_app_country] => US
[patent_app_date] => 2015-06-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 7
[patent_figures_cnt] => 7
[patent_no_of_words] => 12938
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14754835
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/754835 | PEPTIDE INHIBITORS FOR MEDIATING STRESS RESPONSES | Jun 29, 2015 | Abandoned |
Array
(
[id] => 17014164
[patent_doc_number] => 11083783
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-08-10
[patent_title] => XBP1, CD138, and CS1 peptides
[patent_app_type] => utility
[patent_app_number] => 14/754456
[patent_app_country] => US
[patent_app_date] => 2015-06-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 24
[patent_figures_cnt] => 24
[patent_no_of_words] => 28921
[patent_no_of_claims] => 24
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 52
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14754456
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/754456 | XBP1, CD138, and CS1 peptides | Jun 28, 2015 | Issued |
Array
(
[id] => 10408119
[patent_doc_number] => 20150293128
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-10-15
[patent_title] => 'METHOD OF SCREENING MHC MOLECULES'
[patent_app_type] => utility
[patent_app_number] => 14/752122
[patent_app_country] => US
[patent_app_date] => 2015-06-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11184
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14752122
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/752122 | METHOD OF SCREENING MHC MOLECULES | Jun 25, 2015 | Abandoned |
Array
(
[id] => 11471232
[patent_doc_number] => 20170058015
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-03-02
[patent_title] => 'SYNTAC POLYPEPTIDES AND USES THEREOF'
[patent_app_type] => utility
[patent_app_number] => 15/306678
[patent_app_country] => US
[patent_app_date] => 2015-06-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 29
[patent_figures_cnt] => 29
[patent_no_of_words] => 49658
[patent_no_of_claims] => 78
[patent_no_of_ind_claims] => 25
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15306678
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/306678 | SYNTAC POLYPEPTIDES AND USES THEREOF | Jun 14, 2015 | Abandoned |
Array
(
[id] => 11567422
[patent_doc_number] => 20170106066
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-04-20
[patent_title] => 'ENGINEERED INVARIANT CHAIN MOLECULE FOR IMPROVED MHC CLASS I LOADING'
[patent_app_type] => utility
[patent_app_number] => 15/317338
[patent_app_country] => US
[patent_app_date] => 2015-06-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 13
[patent_no_of_words] => 11187
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15317338
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/317338 | ENGINEERED INVARIANT CHAIN MOLECULE FOR IMPROVED MHC CLASS I LOADING | Jun 9, 2015 | Abandoned |
Array
(
[id] => 12983653
[patent_doc_number] => 20170343545
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-11-30
[patent_title] => Determining Antigen Recognition through Barcoding of MHC Multimers
[patent_app_type] => utility
[patent_app_number] => 15/316584
[patent_app_country] => US
[patent_app_date] => 2015-06-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18883
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15316584
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/316584 | Determining Antigen Recognition through Barcoding of MHC Multimers | Jun 7, 2015 | Pending |
Array
(
[id] => 12983653
[patent_doc_number] => 20170343545
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-11-30
[patent_title] => Determining Antigen Recognition through Barcoding of MHC Multimers
[patent_app_type] => utility
[patent_app_number] => 15/316584
[patent_app_country] => US
[patent_app_date] => 2015-06-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18883
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15316584
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/316584 | Determining Antigen Recognition through Barcoding of MHC Multimers | Jun 7, 2015 | Pending |
Array
(
[id] => 10458041
[patent_doc_number] => 20150343055
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2015-12-03
[patent_title] => 'COMPOSITIONS AND METHODS USING RECOMBINANT MHC MOLECULES FOR THE TREATMENT OF STROKE'
[patent_app_type] => utility
[patent_app_number] => 14/732145
[patent_app_country] => US
[patent_app_date] => 2015-06-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 31
[patent_figures_cnt] => 31
[patent_no_of_words] => 54861
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14732145
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/732145 | Compositions and methods using recombinant MHC molecules for the treatment of stroke | Jun 4, 2015 | Issued |
Array
(
[id] => 10670886
[patent_doc_number] => 20160017031
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-01-21
[patent_title] => 'T CELL RECEPTOR MIMIC RL9A'
[patent_app_type] => utility
[patent_app_number] => 14/723236
[patent_app_country] => US
[patent_app_date] => 2015-05-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 68
[patent_figures_cnt] => 68
[patent_no_of_words] => 47531
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 14723236
[rel_patent_id] =>[rel_patent_doc_number] =>) 14/723236 | T CELL RECEPTOR MIMIC RL9A | May 26, 2015 | Abandoned |