
Mary M. Lyons
Examiner (ID: 1163, Phone: (571)272-2966 , Office: P/1645 )
| Most Active Art Unit | 1645 |
| Art Unit(s) | 1653, 1645 |
| Total Applications | 662 |
| Issued Applications | 371 |
| Pending Applications | 93 |
| Abandoned Applications | 224 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 18955567
[patent_doc_number] => 20240043894
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-02-08
[patent_title] => PRODUCTION OF NMN AND ITS DERIVATIVES VIA MICROBIAL PROCESSES
[patent_app_type] => utility
[patent_app_number] => 18/052595
[patent_app_country] => US
[patent_app_date] => 2022-11-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10466
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18052595
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/052595 | PRODUCTION OF NMN AND ITS DERIVATIVES VIA MICROBIAL PROCESSES | Nov 3, 2022 | Pending |
Array
(
[id] => 18564828
[patent_doc_number] => 20230255154
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-08-17
[patent_title] => SYSTEM AND METHOD FOR IN-SITU AMELIORATIONREMEDIATION OF SALINE-ALKALI SOIL USING MICROALGAE
[patent_app_type] => utility
[patent_app_number] => 17/973698
[patent_app_country] => US
[patent_app_date] => 2022-10-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 2421
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 91
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17973698
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/973698 | SYSTEM AND METHOD FOR IN-SITU AMELIORATIONREMEDIATION OF SALINE-ALKALI SOIL USING MICROALGAE | Oct 25, 2022 | Pending |
Array
(
[id] => 18449632
[patent_doc_number] => 20230190908
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-22
[patent_title] => DNABII VACCINES AND ANTIBODIES WITH ENHANCED ACTIVITY
[patent_app_type] => utility
[patent_app_number] => 18/047619
[patent_app_country] => US
[patent_app_date] => 2022-10-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 42111
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -50
[patent_words_short_claim] => 14
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18047619
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/047619 | DNABII vaccines and antibodies with enhanced activity | Oct 17, 2022 | Issued |
Array
(
[id] => 19373919
[patent_doc_number] => 12065468
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-08-20
[patent_title] => Heme-binding small peptide
[patent_app_type] => utility
[patent_app_number] => 18/045914
[patent_app_country] => US
[patent_app_date] => 2022-10-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 21
[patent_figures_cnt] => 21
[patent_no_of_words] => 24009
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 49
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18045914
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/045914 | Heme-binding small peptide | Oct 11, 2022 | Issued |
Array
(
[id] => 18405823
[patent_doc_number] => 20230167174
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-01
[patent_title] => TREM2 STABILIZING ANTIBODIES
[patent_app_type] => utility
[patent_app_number] => 17/934795
[patent_app_country] => US
[patent_app_date] => 2022-09-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 82227
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -37
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17934795
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/934795 | TREM2 STABILIZING ANTIBODIES | Sep 22, 2022 | Pending |
Array
(
[id] => 19615386
[patent_doc_number] => 20240401066
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-12-05
[patent_title] => STRAIN FOR PRODUCING HIGH CONCENTRATION L-GLUTAMIC ACID AND METHOD FOR PRODUCING L-GLUTAMIC ACID USING THE SAME
[patent_app_type] => utility
[patent_app_number] => 18/694893
[patent_app_country] => US
[patent_app_date] => 2022-09-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14531
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -7
[patent_words_short_claim] => 18
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18694893
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/694893 | STRAIN FOR PRODUCING HIGH CONCENTRATION L-GLUTAMIC ACID AND METHOD FOR PRODUCING L-GLUTAMIC ACID USING THE SAME | Sep 21, 2022 | Pending |
Array
(
[id] => 18338255
[patent_doc_number] => 20230130204
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-04-27
[patent_title] => METHOD OF DIAGNOSING A DYSBIOSIS
[patent_app_type] => utility
[patent_app_number] => 17/942327
[patent_app_country] => US
[patent_app_date] => 2022-09-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15896
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17942327
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/942327 | METHOD OF DIAGNOSING A DYSBIOSIS | Sep 11, 2022 | Pending |
Array
(
[id] => 18582927
[patent_doc_number] => 20230265184
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-08-24
[patent_title] => CHIMERIC ANTIGEN RECEPTORS WITH ENHANCED NFKB SIGNALING
[patent_app_type] => utility
[patent_app_number] => 17/929457
[patent_app_country] => US
[patent_app_date] => 2022-09-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 28069
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 19
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17929457
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/929457 | CHIMERIC ANTIGEN RECEPTORS WITH ENHANCED NFKB SIGNALING | Sep 1, 2022 | Pending |
Array
(
[id] => 18033834
[patent_doc_number] => 20220378049
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-12-01
[patent_title] => PROTECTIVE BARRIER COMPOSITIONS, AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/817719
[patent_app_country] => US
[patent_app_date] => 2022-08-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 15168
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 47
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17817719
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/817719 | Protective barrier compositions, and uses thereof | Aug 4, 2022 | Issued |
Array
(
[id] => 18208498
[patent_doc_number] => 20230054756
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-02-23
[patent_title] => COMPOSITION FOR DIFFERENTIAL DIAGNOSIS OF ACANTHAMOEBA KERATITIS COMPRISING CHORISMATE MUTASE PROTEIN ANTIBODIES, AND ACANTHAMOEBA KERATITIS DIAGNOSIS KIT USING SAME
[patent_app_type] => utility
[patent_app_number] => 17/817459
[patent_app_country] => US
[patent_app_date] => 2022-08-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 2509
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -4
[patent_words_short_claim] => 17
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17817459
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/817459 | COMPOSITION FOR DIFFERENTIAL DIAGNOSIS OF ACANTHAMOEBA KERATITIS COMPRISING CHORISMATE MUTASE PROTEIN ANTIBODIES, AND ACANTHAMOEBA KERATITIS DIAGNOSIS KIT USING SAME | Aug 3, 2022 | Pending |
Array
(
[id] => 18179799
[patent_doc_number] => 20230040528
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-02-09
[patent_title] => METHODS TO SPECIFICALLY PROFILE PROTEASE ACTIVITY AT LYMPH NODES
[patent_app_type] => utility
[patent_app_number] => 17/816765
[patent_app_country] => US
[patent_app_date] => 2022-08-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12225
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17816765
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/816765 | METHODS TO SPECIFICALLY PROFILE PROTEASE ACTIVITY AT LYMPH NODES | Aug 1, 2022 | Abandoned |
Array
(
[id] => 19358574
[patent_doc_number] => 20240260608
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2024-08-08
[patent_title] => METHODS FOR THE REDUCTION OF METHANE PRODUCTION IN RUMINANTS
[patent_app_type] => utility
[patent_app_number] => 18/291870
[patent_app_country] => US
[patent_app_date] => 2022-08-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 8519
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18291870
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/291870 | Methods for the reduction of methane production in ruminants | Aug 1, 2022 | Issued |
Array
(
[id] => 18077372
[patent_doc_number] => 20220402984
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-12-22
[patent_title] => LYSIN-ANTIMICROBIAL PEPTIDE (AMP) POLYPEPTIDE CONSTRUCTS, LYSINS, ISOLATED POLYNUCLEOTIDES ENCODING SAME AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/816318
[patent_app_country] => US
[patent_app_date] => 2022-07-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 41667
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17816318
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/816318 | LYSIN-ANTIMICROBIAL PEPTIDE (AMP) POLYPEPTIDE CONSTRUCTS, LYSINS, ISOLATED POLYNUCLEOTIDES ENCODING SAME AND USES THEREOF | Jul 28, 2022 | Abandoned |
Array
(
[id] => 18449675
[patent_doc_number] => 20230190951
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-22
[patent_title] => CONJUGATES OF ANTIBODIES AN IMMUNE CELL ENGAGERS
[patent_app_type] => utility
[patent_app_number] => 17/812160
[patent_app_country] => US
[patent_app_date] => 2022-07-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 50561
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 85
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17812160
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/812160 | CONJUGATES OF ANTIBODIES AN IMMUNE CELL ENGAGERS | Jul 11, 2022 | Pending |
Array
(
[id] => 18091371
[patent_doc_number] => 20220409712
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-12-29
[patent_title] => BIOFUSION PROTEINS AS ANTI-MALARIA VACCINES
[patent_app_type] => utility
[patent_app_number] => 17/858642
[patent_app_country] => US
[patent_app_date] => 2022-07-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11664
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -20
[patent_words_short_claim] => 51
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17858642
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/858642 | BIOFUSION PROTEINS AS ANTI-MALARIA VACCINES | Jul 5, 2022 | Abandoned |
Array
(
[id] => 18311172
[patent_doc_number] => 20230115072
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-04-13
[patent_title] => Immunogenic Compositions of Polysaccharide-Protein Pegylated Compounds
[patent_app_type] => utility
[patent_app_number] => 17/857110
[patent_app_country] => US
[patent_app_date] => 2022-07-04
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9260
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -25
[patent_words_short_claim] => 139
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17857110
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/857110 | Immunogenic compositions of polysaccharide-protein pegylated compounds | Jul 3, 2022 | Issued |
Array
(
[id] => 17988901
[patent_doc_number] => 20220354938
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-11-10
[patent_title] => CELL-TARGETING MOLECULES COMPRISING DE-IMMUNIZED, SHIGA TOXIN A SUBUNIT EFFECTORS AND CD8+ T-CELL EPITOPES
[patent_app_type] => utility
[patent_app_number] => 17/852669
[patent_app_country] => US
[patent_app_date] => 2022-06-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 147516
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -52
[patent_words_short_claim] => 111
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17852669
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/852669 | CELL-TARGETING MOLECULES COMPRISING DE-IMMUNIZED, SHIGA TOXIN A SUBUNIT EFFECTORS AND CD8+ T-CELL EPITOPES | Jun 28, 2022 | Abandoned |
Array
(
[id] => 19674552
[patent_doc_number] => 12186390
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-01-07
[patent_title] => Vaccine delivery method
[patent_app_type] => utility
[patent_app_number] => 17/838890
[patent_app_country] => US
[patent_app_date] => 2022-06-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 34
[patent_figures_cnt] => 64
[patent_no_of_words] => 17898
[patent_no_of_claims] => 23
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 69
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17838890
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/838890 | Vaccine delivery method | Jun 12, 2022 | Issued |
Array
(
[id] => 17914692
[patent_doc_number] => 20220317087
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-10-06
[patent_title] => APPARATUS, SYSTEMS, AND METHODS FOR DETERMINING SUSCEPTIBILITY OF MICROORGANISMS TO ANTI-INFECTIVES
[patent_app_type] => utility
[patent_app_number] => 17/806206
[patent_app_country] => US
[patent_app_date] => 2022-06-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19734
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 351
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17806206
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/806206 | Apparatus, systems, and methods for determining susceptibility of microorganisms to anti-infectives | Jun 8, 2022 | Issued |
Array
(
[id] => 17881217
[patent_doc_number] => 20220296694
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-09-22
[patent_title] => MYCOPLASMA BOVIS COMPOSITIONS
[patent_app_type] => utility
[patent_app_number] => 17/833002
[patent_app_country] => US
[patent_app_date] => 2022-06-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12976
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17833002
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/833002 | MYCOPLASMA BOVIS COMPOSITIONS | Jun 5, 2022 | Pending |