Melody Noel Brown
Examiner (ID: 10713, Phone: (571)272-2599 , Office: P/2917 )
Most Active Art Unit | 2917 |
Art Unit(s) | 2911, 2901, 2915, 2917 |
Total Applications | 11779 |
Issued Applications | 11665 |
Pending Applications | 10 |
Abandoned Applications | 102 |
Applications
Application number | Title of the application | Filing Date | Status |
---|---|---|---|
Array
(
[id] => 18216679
[patent_doc_number] => 11591602
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-02-28
[patent_title] => Method of allele specific silencing for the treatment of autosomal dominant Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT)
[patent_app_type] => utility
[patent_app_number] => 16/077835
[patent_app_country] => US
[patent_app_date] => 2017-02-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 14
[patent_figures_cnt] => 14
[patent_no_of_words] => 7770
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 101
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16077835
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/077835 | Method of allele specific silencing for the treatment of autosomal dominant Catecholaminergic Polymorphic Ventricular Tachycardia (CPVT) | Feb 13, 2017 | Issued |
Array
(
[id] => 18492404
[patent_doc_number] => 11697815
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-07-11
[patent_title] => Regulation of gene expression through aptamer-modulated polyadenylation
[patent_app_type] => utility
[patent_app_number] => 16/074657
[patent_app_country] => US
[patent_app_date] => 2017-02-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 18
[patent_no_of_words] => 11284
[patent_no_of_claims] => 30
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 95
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16074657
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/074657 | Regulation of gene expression through aptamer-modulated polyadenylation | Feb 1, 2017 | Issued |
Array
(
[id] => 18029135
[patent_doc_number] => 11512310
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-11-29
[patent_title] => Regulation of gene expression via aptamer-mediated control of self-cleaving ribozymes
[patent_app_type] => utility
[patent_app_number] => 16/074681
[patent_app_country] => US
[patent_app_date] => 2017-02-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 19
[patent_no_of_words] => 13547
[patent_no_of_claims] => 23
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 163
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16074681
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/074681 | Regulation of gene expression via aptamer-mediated control of self-cleaving ribozymes | Feb 1, 2017 | Issued |
Array
(
[id] => 11866448
[patent_doc_number] => 20170233732
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-08-17
[patent_title] => 'MODULATION OF APOLIPOPROTEIN C-III (APOCIII) EXPRESSION IN LIPOPROTEIN LIPASE DEFICIENT (LPLD) POPULATIONS'
[patent_app_type] => utility
[patent_app_number] => 15/415408
[patent_app_country] => US
[patent_app_date] => 2017-01-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 38525
[patent_no_of_claims] => 14
[patent_no_of_ind_claims] => 6
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15415408
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/415408 | MODULATION OF APOLIPOPROTEIN C-III (APOCIII) EXPRESSION IN LIPOPROTEIN LIPASE DEFICIENT (LPLD) POPULATIONS | Jan 24, 2017 | Abandoned |
Array
(
[id] => 13249063
[patent_doc_number] => 10137203
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2018-11-27
[patent_title] => HER2 aptamer-anticancer drug complex for cancer cell chemotherapy
[patent_app_type] => utility
[patent_app_number] => 15/407580
[patent_app_country] => US
[patent_app_date] => 2017-01-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 23
[patent_no_of_words] => 4999
[patent_no_of_claims] => 4
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 78
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15407580
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/407580 | HER2 aptamer-anticancer drug complex for cancer cell chemotherapy | Jan 16, 2017 | Issued |
Array
(
[id] => 11836654
[patent_doc_number] => 20170218371
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-08-03
[patent_title] => 'MICRORNA COMPOUNDS AND METHODS FOR MODULATING MIR-122'
[patent_app_type] => utility
[patent_app_number] => 15/403672
[patent_app_country] => US
[patent_app_date] => 2017-01-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 12
[patent_no_of_words] => 39569
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15403672
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/403672 | MicroRNA compounds and methods for modulating miR-122 | Jan 10, 2017 | Issued |
Array
(
[id] => 12058986
[patent_doc_number] => 20170335330
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-11-23
[patent_title] => 'ANTISENSE OLIGONUCLEOTIDE MODULATORS OF SEROTONIN RECEPTOR 2C AND USES THEREOF'
[patent_app_type] => utility
[patent_app_number] => 15/400698
[patent_app_country] => US
[patent_app_date] => 2017-01-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 14
[patent_figures_cnt] => 14
[patent_no_of_words] => 16140
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15400698
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/400698 | Antisense oligonucleotide modulators of serotonin receptor 2C and uses thereof | Jan 5, 2017 | Issued |
Array
(
[id] => 11568869
[patent_doc_number] => 20170107514
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-04-20
[patent_title] => 'RNA MOLECULES AND USES THEREOF'
[patent_app_type] => utility
[patent_app_number] => 15/397124
[patent_app_country] => US
[patent_app_date] => 2017-01-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 16
[patent_figures_cnt] => 16
[patent_no_of_words] => 21218
[patent_no_of_claims] => 5
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15397124
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/397124 | RNA MOLECULES AND USES THEREOF | Jan 2, 2017 | Abandoned |
Array
(
[id] => 14960759
[patent_doc_number] => 20190307857
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-10-10
[patent_title] => MODIFIED mRNA ENCODING A URIDINE DIPHOPSPHATE GLUCURONOSYL TRANSFERASE AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 15/781881
[patent_app_country] => US
[patent_app_date] => 2016-12-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13089
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15781881
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/781881 | MODIFIED mRNA ENCODING A URIDINE DIPHOPSPHATE GLUCURONOSYL TRANSFERASE AND USES THEREOF | Dec 8, 2016 | Abandoned |
Array
(
[id] => 13622859
[patent_doc_number] => 20180362981
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-20
[patent_title] => PHARMACEUTICAL COMPOSITION FOR TREATING AND/OR PREVENTING CANCER
[patent_app_type] => utility
[patent_app_number] => 16/060711
[patent_app_country] => US
[patent_app_date] => 2016-12-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10068
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 31
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16060711
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/060711 | Pharmaceutical composition for treating and/or preventing cancer | Dec 8, 2016 | Issued |
Array
(
[id] => 17029953
[patent_doc_number] => 11091759
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-08-17
[patent_title] => Methods and compositions for treating a Serpinc1-associated disorder
[patent_app_type] => utility
[patent_app_number] => 15/371300
[patent_app_country] => US
[patent_app_date] => 2016-12-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 27
[patent_figures_cnt] => 37
[patent_no_of_words] => 63062
[patent_no_of_claims] => 38
[patent_no_of_ind_claims] => 15
[patent_words_short_claim] => 133
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15371300
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/371300 | Methods and compositions for treating a Serpinc1-associated disorder | Dec 6, 2016 | Issued |
Array
(
[id] => 16817039
[patent_doc_number] => 11001846
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-05-11
[patent_title] => Aptamers, nucleic acid molecules, polynucleotides, synthetic antibodies compositions for detecting PRRS viruses and treating PRRS virus infection
[patent_app_type] => utility
[patent_app_number] => 16/060001
[patent_app_country] => US
[patent_app_date] => 2016-12-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 45
[patent_figures_cnt] => 45
[patent_no_of_words] => 19637
[patent_no_of_claims] => 12
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 92
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16060001
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/060001 | Aptamers, nucleic acid molecules, polynucleotides, synthetic antibodies compositions for detecting PRRS viruses and treating PRRS virus infection | Nov 30, 2016 | Issued |
Array
(
[id] => 16041093
[patent_doc_number] => 10682397
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-06-16
[patent_title] => Methods of treating fragile X syndrome and related disorders
[patent_app_type] => utility
[patent_app_number] => 15/364332
[patent_app_country] => US
[patent_app_date] => 2016-11-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 26
[patent_no_of_words] => 13338
[patent_no_of_claims] => 9
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 41
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15364332
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/364332 | Methods of treating fragile X syndrome and related disorders | Nov 29, 2016 | Issued |
Array
(
[id] => 16564453
[patent_doc_number] => 10889814
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-01-12
[patent_title] => Monocarboxylate transporter 4 (MCT
[patent_app_type] => utility
[patent_app_number] => 15/779419
[patent_app_country] => US
[patent_app_date] => 2016-11-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 25
[patent_figures_cnt] => 32
[patent_no_of_words] => 11945
[patent_no_of_claims] => 53
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 48
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15779419
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/779419 | Monocarboxylate transporter 4 (MCT | Nov 29, 2016 | Issued |
Array
(
[id] => 11713683
[patent_doc_number] => 20170182182
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-06-29
[patent_title] => 'Composition For Delivery Of Genetic Material'
[patent_app_type] => utility
[patent_app_number] => 15/364794
[patent_app_country] => US
[patent_app_date] => 2016-11-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 17
[patent_figures_cnt] => 17
[patent_no_of_words] => 12487
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15364794
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/364794 | Composition for delivery of genetic material | Nov 29, 2016 | Issued |
Array
(
[id] => 11670336
[patent_doc_number] => 20170159057
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-06-08
[patent_title] => 'COMPOSITIONS AND METHODS FOR MODULATION OF RORGAMMAT FUNCTIONS'
[patent_app_type] => utility
[patent_app_number] => 15/358668
[patent_app_country] => US
[patent_app_date] => 2016-11-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 47
[patent_figures_cnt] => 47
[patent_no_of_words] => 51556
[patent_no_of_claims] => 23
[patent_no_of_ind_claims] => 9
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15358668
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/358668 | COMPOSITIONS AND METHODS FOR MODULATION OF RORGAMMAT FUNCTIONS | Nov 21, 2016 | Abandoned |
Array
(
[id] => 14519511
[patent_doc_number] => 10337003
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2019-07-02
[patent_title] => Compositions for treating muscular dystrophy
[patent_app_type] => utility
[patent_app_number] => 15/359152
[patent_app_country] => US
[patent_app_date] => 2016-11-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 8
[patent_figures_cnt] => 11
[patent_no_of_words] => 26729
[patent_no_of_claims] => 12
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 77
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15359152
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/359152 | Compositions for treating muscular dystrophy | Nov 21, 2016 | Issued |
Array
(
[id] => 11649603
[patent_doc_number] => 20170145505
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-05-25
[patent_title] => 'Methods of Novel Therapeutic Candidate Identification Through Gene Expression Analysis in Vascular-Related Disease'
[patent_app_type] => utility
[patent_app_number] => 15/354303
[patent_app_country] => US
[patent_app_date] => 2016-11-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 1
[patent_figures_cnt] => 1
[patent_no_of_words] => 23144
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15354303
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/354303 | Methods of Novel Therapeutic Candidate Identification Through Gene Expression Analysis in Vascular-Related Disease | Nov 16, 2016 | Abandoned |
Array
(
[id] => 17015418
[patent_doc_number] => 11085045
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-08-10
[patent_title] => Functional tRNA-aptamer molecules
[patent_app_type] => utility
[patent_app_number] => 15/773271
[patent_app_country] => US
[patent_app_date] => 2016-11-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 13
[patent_figures_cnt] => 20
[patent_no_of_words] => 13513
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 116
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15773271
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/773271 | Functional tRNA-aptamer molecules | Nov 15, 2016 | Issued |
Array
(
[id] => 11627623
[patent_doc_number] => 20170137812
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-05-18
[patent_title] => 'COMPOSITIONS AND METHODS FOR MODULATING MYELOID DERIVED SUPPRESSOR CELLS'
[patent_app_type] => utility
[patent_app_number] => 15/350622
[patent_app_country] => US
[patent_app_date] => 2016-11-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 16
[patent_figures_cnt] => 16
[patent_no_of_words] => 11333
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15350622
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/350622 | COMPOSITIONS AND METHODS FOR MODULATING MYELOID DERIVED SUPPRESSOR CELLS | Nov 13, 2016 | Abandoned |