Melody Noel Brown
Examiner (ID: 10713, Phone: (571)272-2599 , Office: P/2917 )
Most Active Art Unit | 2917 |
Art Unit(s) | 2911, 2901, 2915, 2917 |
Total Applications | 11779 |
Issued Applications | 11665 |
Pending Applications | 10 |
Abandoned Applications | 102 |
Applications
Application number | Title of the application | Filing Date | Status |
---|---|---|---|
Array
(
[id] => 16399123
[patent_doc_number] => 20200339981
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-10-29
[patent_title] => SET OF ANTI-PATHOGENIC NUCLEIC ACIDS, COMPOSITIONS AND USES THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/930879
[patent_app_country] => US
[patent_app_date] => 2020-07-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16697
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -21
[patent_words_short_claim] => 52
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16930879
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/930879 | SET OF ANTI-PATHOGENIC NUCLEIC ACIDS, COMPOSITIONS AND USES THEREOF | Jul 15, 2020 | Abandoned |
Array
(
[id] => 16870484
[patent_doc_number] => 20210163951
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-06-03
[patent_title] => METHODS AND COMPOSITIONS FOR TREATING A PROPROTEIN CONVERTASE SUBTILISIN KEXIN (PCSK9) GENE-ASSOCIATED DISORDER
[patent_app_type] => utility
[patent_app_number] => 16/929470
[patent_app_country] => US
[patent_app_date] => 2020-07-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 56907
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -22
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16929470
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/929470 | METHODS AND COMPOSITIONS FOR TREATING A PROPROTEIN CONVERTASE SUBTILISIN KEXIN (PCSK9) GENE-ASSOCIATED DISORDER | Jul 14, 2020 | Abandoned |
Array
(
[id] => 17307561
[patent_doc_number] => 11208658
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-12-28
[patent_title] => Methods and compositions for the specific inhibition of alpha-1 antitrypsin by double-stranded RNA
[patent_app_type] => utility
[patent_app_number] => 16/918205
[patent_app_country] => US
[patent_app_date] => 2020-07-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 29
[patent_figures_cnt] => 29
[patent_no_of_words] => 70720
[patent_no_of_claims] => 29
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 80
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16918205
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/918205 | Methods and compositions for the specific inhibition of alpha-1 antitrypsin by double-stranded RNA | Jun 30, 2020 | Issued |
Array
(
[id] => 16808270
[patent_doc_number] => 20210130823
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-06
[patent_title] => COMPOSITIONS AND METHODS
[patent_app_type] => utility
[patent_app_number] => 16/910727
[patent_app_country] => US
[patent_app_date] => 2020-06-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 82475
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16910727
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/910727 | COMPOSITIONS AND METHODS | Jun 23, 2020 | Abandoned |
Array
(
[id] => 16571076
[patent_doc_number] => 20210010082
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-01-14
[patent_title] => Methods of Novel Therapeutic Candidate Identification Through Gene Expression Analysis in Vascular-Related Diseases
[patent_app_type] => utility
[patent_app_number] => 16/908540
[patent_app_country] => US
[patent_app_date] => 2020-06-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17042
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 86
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16908540
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/908540 | Methods of Novel Therapeutic Candidate Identification Through Gene Expression Analysis in Vascular-Related Diseases | Jun 21, 2020 | Pending |
Array
(
[id] => 16606168
[patent_doc_number] => 10907163
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2021-02-02
[patent_title] => Aptamers that bind to natural and synthetic cannabinoids
[patent_app_type] => utility
[patent_app_number] => 16/901723
[patent_app_country] => US
[patent_app_date] => 2020-06-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 16
[patent_figures_cnt] => 47
[patent_no_of_words] => 15511
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 47
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16901723
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/901723 | Aptamers that bind to natural and synthetic cannabinoids | Jun 14, 2020 | Issued |
Array
(
[id] => 16451109
[patent_doc_number] => 20200360535
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-19
[patent_title] => METHODS OF IMPROVING ADENO-ASSOCIATED VIRAL TRANSDUCTION
[patent_app_type] => utility
[patent_app_number] => 16/896811
[patent_app_country] => US
[patent_app_date] => 2020-06-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 17131
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 39
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16896811
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/896811 | METHODS OF IMPROVING ADENO-ASSOCIATED VIRAL TRANSDUCTION | Jun 8, 2020 | Pending |
Array
(
[id] => 17923039
[patent_doc_number] => 11466274
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-10-11
[patent_title] => Modified gapmer oligonucleotides and methods of use
[patent_app_type] => utility
[patent_app_number] => 16/887063
[patent_app_country] => US
[patent_app_date] => 2020-05-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 22
[patent_figures_cnt] => 44
[patent_no_of_words] => 21413
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 50
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16887063
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/887063 | Modified gapmer oligonucleotides and methods of use | May 28, 2020 | Issued |
Array
(
[id] => 18102676
[patent_doc_number] => 11542555
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-01-03
[patent_title] => BAG3 as a target for therapy of heart failure
[patent_app_type] => utility
[patent_app_number] => 15/929784
[patent_app_country] => US
[patent_app_date] => 2020-05-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 12
[patent_figures_cnt] => 18
[patent_no_of_words] => 25419
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 81
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15929784
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/929784 | BAG3 as a target for therapy of heart failure | May 20, 2020 | Issued |
Array
(
[id] => 16420560
[patent_doc_number] => 20200345758
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-05
[patent_title] => SERUM AMYLOID P COMPONENT (APCS) iRNA COMPOSITIONS AND METHODS OF USE THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/877586
[patent_app_country] => US
[patent_app_date] => 2020-05-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 51310
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -31
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16877586
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/877586 | Serum amyloid P component (APCS) iRNA compositions and methods of use thereof | May 18, 2020 | Issued |
Array
(
[id] => 16298047
[patent_doc_number] => 20200283770
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-09-10
[patent_title] => METHODS AND COMPOSITIONS TO TREAT DRUG-INDUCED DISEASES AND CONDITIONS
[patent_app_type] => utility
[patent_app_number] => 16/876503
[patent_app_country] => US
[patent_app_date] => 2020-05-18
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 18866
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16876503
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/876503 | METHODS AND COMPOSITIONS TO TREAT DRUG-INDUCED DISEASES AND CONDITIONS | May 17, 2020 | Abandoned |
Array
(
[id] => 16506467
[patent_doc_number] => 20200385723
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-12-10
[patent_title] => ANTI-C9ORF72 OLIGONUCLEOTIDES AND RELATED METHODS
[patent_app_type] => utility
[patent_app_number] => 16/868237
[patent_app_country] => US
[patent_app_date] => 2020-05-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24926
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -20
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16868237
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/868237 | Anti-C9ORF72 oligonucleotides and related methods | May 5, 2020 | Issued |
Array
(
[id] => 16343937
[patent_doc_number] => 20200308587
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-10-01
[patent_title] => Composition For Delivery Of Genetic Material
[patent_app_type] => utility
[patent_app_number] => 16/857803
[patent_app_country] => US
[patent_app_date] => 2020-04-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11789
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 32
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16857803
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/857803 | Composition for delivery of genetic material | Apr 23, 2020 | Issued |
Array
(
[id] => 16222768
[patent_doc_number] => 20200247884
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-08-06
[patent_title] => OLIGONUCLEOTIDES FOR REDUCTION OF PD-L1 EXPRESSION
[patent_app_type] => utility
[patent_app_number] => 16/839025
[patent_app_country] => US
[patent_app_date] => 2020-04-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 48347
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -12
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16839025
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/839025 | Oligonucleotides for reduction of PD-L1 expression | Apr 1, 2020 | Issued |
Array
(
[id] => 16970709
[patent_doc_number] => 11066672
[patent_country] => US
[patent_kind] => B1
[patent_issue_date] => 2021-07-20
[patent_title] => Methods and compositions for the specific inhibition of transthyretin (TTR) by double stranded RNA
[patent_app_type] => utility
[patent_app_number] => 16/837687
[patent_app_country] => US
[patent_app_date] => 2020-04-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 36
[patent_figures_cnt] => 36
[patent_no_of_words] => 83257
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 127
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16837687
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/837687 | Methods and compositions for the specific inhibition of transthyretin (TTR) by double stranded RNA | Mar 31, 2020 | Issued |
Array
(
[id] => 16622817
[patent_doc_number] => 20210041470
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-02-11
[patent_title] => FUNCTIONAL LIGANDS TO OPIOIDS AND OPIOID METABOLITES
[patent_app_type] => utility
[patent_app_number] => 16/832019
[patent_app_country] => US
[patent_app_date] => 2020-03-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11816
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 52
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16832019
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/832019 | FUNCTIONAL LIGANDS TO OPIOIDS AND OPIOID METABOLITES | Mar 26, 2020 | Abandoned |
Array
(
[id] => 18492395
[patent_doc_number] => 11697806
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-07-11
[patent_title] => Polynucleotides, compositions, and methods for genome editing
[patent_app_type] => utility
[patent_app_number] => 16/828615
[patent_app_country] => US
[patent_app_date] => 2020-03-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 51
[patent_figures_cnt] => 66
[patent_no_of_words] => 58097
[patent_no_of_claims] => 26
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 12
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16828615
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/828615 | Polynucleotides, compositions, and methods for genome editing | Mar 23, 2020 | Issued |
Array
(
[id] => 16452915
[patent_doc_number] => 20200362341
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-11-19
[patent_title] => OLIGONUCLEOTIDES FOR TISSUE SPECIFIC APOE MODULATION
[patent_app_type] => utility
[patent_app_number] => 16/818563
[patent_app_country] => US
[patent_app_date] => 2020-03-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 42873
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -23
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16818563
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/818563 | OLIGONUCLEOTIDES FOR TISSUE SPECIFIC APOE MODULATION | Mar 12, 2020 | Pending |
Array
(
[id] => 16506523
[patent_doc_number] => 20200385779
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-12-10
[patent_title] => METHOD FOR DETECTING OCLN-ARHGAP26 GENE
[patent_app_type] => utility
[patent_app_number] => 16/818372
[patent_app_country] => US
[patent_app_date] => 2020-03-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12476
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -6
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16818372
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/818372 | METHOD FOR DETECTING OCLN-ARHGAP26 GENE | Mar 12, 2020 | Abandoned |
Array
(
[id] => 17118720
[patent_doc_number] => 11129829
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-09-28
[patent_title] => Methods for modulating splicing
[patent_app_type] => utility
[patent_app_number] => 16/813069
[patent_app_country] => US
[patent_app_date] => 2020-03-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 35
[patent_figures_cnt] => 35
[patent_no_of_words] => 92715
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 406
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16813069
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/813069 | Methods for modulating splicing | Mar 8, 2020 | Issued |