
Michael C. Wilson
Examiner (ID: 16269, Phone: (571)272-0738 , Office: P/1632 )
| Most Active Art Unit | 1632 |
| Art Unit(s) | 1638, 1633, 1632 |
| Total Applications | 1637 |
| Issued Applications | 556 |
| Pending Applications | 303 |
| Abandoned Applications | 820 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 18615706
[patent_doc_number] => 20230282445
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-09-07
[patent_title] => METHOD OF NUCLEAR REPROGRAMMING
[patent_app_type] => utility
[patent_app_number] => 18/146644
[patent_app_country] => US
[patent_app_date] => 2022-12-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12372
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 15
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18146644
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/146644 | METHOD OF NUCLEAR REPROGRAMMING | Dec 26, 2022 | Pending |
Array
(
[id] => 18610962
[patent_doc_number] => 20230277692
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-09-07
[patent_title] => HUMANIZED RODENTS FOR TESTING THERAPEUTIC AGENTS
[patent_app_type] => utility
[patent_app_number] => 18/089267
[patent_app_country] => US
[patent_app_date] => 2022-12-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 74389
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -1
[patent_words_short_claim] => 28
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18089267
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/089267 | HUMANIZED RODENTS FOR TESTING THERAPEUTIC AGENTS | Dec 26, 2022 | Pending |
Array
(
[id] => 18466084
[patent_doc_number] => 20230200363
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-29
[patent_title] => TRANSGENIC FLUORESCENT ORNAMENTAL AMPHIBIANS
[patent_app_type] => utility
[patent_app_number] => 18/085601
[patent_app_country] => US
[patent_app_date] => 2022-12-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7120
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -36
[patent_words_short_claim] => 59
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18085601
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/085601 | TRANSGENIC FLUORESCENT ORNAMENTAL AMPHIBIANS | Dec 20, 2022 | Pending |
Array
(
[id] => 18469256
[patent_doc_number] => 20230203540
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-06-29
[patent_title] => METHODS AND COMPOSITIONS FOR NUCLEASE-MEDIATED TARGETED INTEGRATION OF TRANSGENES INTO MAMMALIAN LIVER CELLS
[patent_app_type] => utility
[patent_app_number] => 18/085420
[patent_app_country] => US
[patent_app_date] => 2022-12-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 21566
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18085420
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/085420 | METHODS AND COMPOSITIONS FOR NUCLEASE-MEDIATED TARGETED INTEGRATION OF TRANSGENES INTO MAMMALIAN LIVER CELLS | Dec 19, 2022 | Abandoned |
Array
(
[id] => 18707617
[patent_doc_number] => 20230330194
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-10-19
[patent_title] => METHODS OF CYTOTOXIC GENE THERAPY TO TREAT TUMORS
[patent_app_type] => utility
[patent_app_number] => 17/993717
[patent_app_country] => US
[patent_app_date] => 2022-11-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10202
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -11
[patent_words_short_claim] => 66
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17993717
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/993717 | METHODS OF CYTOTOXIC GENE THERAPY TO TREAT TUMORS | Nov 22, 2022 | Abandoned |
Array
(
[id] => 18597581
[patent_doc_number] => 20230272377
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-08-31
[patent_title] => METHODS AND COMPOSITIONS FOR THE ADAR-MEDIATED EDITING OF TRANSMEMBRANE CHANNEL-LIKE PROTEIN 1 (TMC1)
[patent_app_type] => utility
[patent_app_number] => 17/985974
[patent_app_country] => US
[patent_app_date] => 2022-11-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 48478
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17985974
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/985974 | METHODS AND COMPOSITIONS FOR THE ADAR-MEDIATED EDITING OF TRANSMEMBRANE CHANNEL-LIKE PROTEIN 1 (TMC1) | Nov 13, 2022 | Pending |
Array
(
[id] => 18709555
[patent_doc_number] => 20230332175
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-10-19
[patent_title] => TRANSGENIC RABBIT WITH COMMON LIGHT CHAIN
[patent_app_type] => utility
[patent_app_number] => 18/052113
[patent_app_country] => US
[patent_app_date] => 2022-11-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 7395
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 34
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 18052113
[rel_patent_id] =>[rel_patent_doc_number] =>) 18/052113 | TRANSGENIC RABBIT WITH COMMON LIGHT CHAIN | Nov 1, 2022 | Pending |
Array
(
[id] => 18522147
[patent_doc_number] => 20230232795
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-07-27
[patent_title] => NON-HUMAN ANIMALS HAVING HUMANIZED FC-GAMMA RECEPTORS
[patent_app_type] => utility
[patent_app_number] => 17/967510
[patent_app_country] => US
[patent_app_date] => 2022-10-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14185
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -20
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17967510
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/967510 | NON-HUMAN ANIMALS HAVING HUMANIZED FC-GAMMA RECEPTORS | Oct 16, 2022 | Pending |
Array
(
[id] => 18198449
[patent_doc_number] => 20230051968
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-02-16
[patent_title] => PLAKOPHILLIN-2 GENE THERAPY METHODS AND COMPOSITIONS
[patent_app_type] => utility
[patent_app_number] => 17/938568
[patent_app_country] => US
[patent_app_date] => 2022-10-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19472
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 82
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17938568
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/938568 | PLAKOPHILLIN-2 GENE THERAPY METHODS AND COMPOSITIONS | Oct 5, 2022 | Pending |
Array
(
[id] => 18223970
[patent_doc_number] => 20230062964
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-03-02
[patent_title] => MODIFIED MICE THAT PRODUCE HEAVY CHAIN ONLY ANTIBODIES
[patent_app_type] => utility
[patent_app_number] => 17/823506
[patent_app_country] => US
[patent_app_date] => 2022-08-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9112
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -51
[patent_words_short_claim] => 44
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17823506
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/823506 | MODIFIED MICE THAT PRODUCE HEAVY CHAIN ONLY ANTIBODIES | Aug 29, 2022 | Pending |
Array
(
[id] => 18692932
[patent_doc_number] => 20230323290
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-10-12
[patent_title] => CELLS USEFUL FOR IMMUNO-BASED BOTULINUM TOXIN SEROTYPE A ACTIVITY ASSAYS
[patent_app_type] => utility
[patent_app_number] => 17/884069
[patent_app_country] => US
[patent_app_date] => 2022-08-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 61625
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 37
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17884069
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/884069 | CELLS USEFUL FOR IMMUNO-BASED BOTULINUM TOXIN SEROTYPE A ACTIVITY ASSAYS | Aug 8, 2022 | Abandoned |
Array
(
[id] => 18209806
[patent_doc_number] => 20230056066
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-02-23
[patent_title] => PLAKOPHILLIN-2 GENE THERAPY METHODS AND COMPOSITIONS
[patent_app_type] => utility
[patent_app_number] => 17/882314
[patent_app_country] => US
[patent_app_date] => 2022-08-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19391
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 69
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17882314
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/882314 | PLAKOPHILLIN-2 GENE THERAPY METHODS AND COMPOSITIONS | Aug 4, 2022 | Pending |
Array
(
[id] => 18180919
[patent_doc_number] => 20230041648
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-02-09
[patent_title] => PLAKOPHILLIN-2 GENE THERAPY METHODS AND COMPOSITIONS
[patent_app_type] => utility
[patent_app_number] => 17/882395
[patent_app_country] => US
[patent_app_date] => 2022-08-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 19260
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 83
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17882395
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/882395 | PLAKOPHILLIN-2 GENE THERAPY METHODS AND COMPOSITIONS | Aug 4, 2022 | Abandoned |
Array
(
[id] => 18179557
[patent_doc_number] => 20230040286
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-02-09
[patent_title] => METHODS OF PRODUCING HUMAN FOREGUT ENDODERM CELLS EXPRESSING PDX1 FROM HUMAN DEFINITIVE ENDODERM
[patent_app_type] => utility
[patent_app_number] => 17/814791
[patent_app_country] => US
[patent_app_date] => 2022-07-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 55001
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -4
[patent_words_short_claim] => 44
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17814791
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/814791 | METHODS OF PRODUCING HUMAN FOREGUT ENDODERM CELLS EXPRESSING PDX1 FROM HUMAN DEFINITIVE ENDODERM | Jul 24, 2022 | Abandoned |
Array
(
[id] => 18055489
[patent_doc_number] => 20220386575
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-12-08
[patent_title] => GENETICALLY MODIFIED T CELL RECEPTOR MICE
[patent_app_type] => utility
[patent_app_number] => 17/814388
[patent_app_country] => US
[patent_app_date] => 2022-07-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 23236
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17814388
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/814388 | GENETICALLY MODIFIED T CELL RECEPTOR MICE | Jul 21, 2022 | Abandoned |
Array
(
[id] => 18345531
[patent_doc_number] => 20230133641
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-05-04
[patent_title] => VIABLE GALACTOSYLTRANSFERASE KNOCK-OUT SHEEP AND RELATED METHODS
[patent_app_type] => utility
[patent_app_number] => 17/812342
[patent_app_country] => US
[patent_app_date] => 2022-07-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10735
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -25
[patent_words_short_claim] => 16
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17812342
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/812342 | Viable genetically modified sheep with an inactivated alpha-1,3-galactosyltransferase (GGTA1) gene | Jul 12, 2022 | Issued |
Array
(
[id] => 19439355
[patent_doc_number] => 12089576
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-09-17
[patent_title] => Nucleic acids comprising a modified rodent activin a receptor type 1 (Acvr1) gene
[patent_app_type] => utility
[patent_app_number] => 17/811089
[patent_app_country] => US
[patent_app_date] => 2022-07-07
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 3
[patent_figures_cnt] => 3
[patent_no_of_words] => 12238
[patent_no_of_claims] => 12
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 185
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17811089
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/811089 | Nucleic acids comprising a modified rodent activin a receptor type 1 (Acvr1) gene | Jul 6, 2022 | Issued |
Array
(
[id] => 19808333
[patent_doc_number] => 12239692
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-03-04
[patent_title] => Adeno-associated virus factor VIII vectors
[patent_app_type] => utility
[patent_app_number] => 17/854286
[patent_app_country] => US
[patent_app_date] => 2022-06-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 21
[patent_figures_cnt] => 52
[patent_no_of_words] => 15089
[patent_no_of_claims] => 5
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 58
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17854286
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/854286 | Adeno-associated virus factor VIII vectors | Jun 29, 2022 | Issued |
Array
(
[id] => 19736666
[patent_doc_number] => 12213466
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-02-04
[patent_title] => Process for using CRISPR to transfect primordial germ cells in avians
[patent_app_type] => utility
[patent_app_number] => 17/809219
[patent_app_country] => US
[patent_app_date] => 2022-06-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 28
[patent_figures_cnt] => 45
[patent_no_of_words] => 13949
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 86
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17809219
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/809219 | Process for using CRISPR to transfect primordial germ cells in avians | Jun 26, 2022 | Issued |
Array
(
[id] => 18272157
[patent_doc_number] => 20230093399
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-03-23
[patent_title] => METHODS FOR GENERATING PLURIPOTENT STEM CELL-DERIVED BROWN FAT CELLS
[patent_app_type] => utility
[patent_app_number] => 17/825112
[patent_app_country] => US
[patent_app_date] => 2022-05-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 40020
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 41
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17825112
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/825112 | METHODS FOR GENERATING PLURIPOTENT STEM CELL-DERIVED BROWN FAT CELLS | May 25, 2022 | Pending |