
Milton Nelson Jr.
Examiner (ID: 8060, Phone: (571)272-6861 , Office: P/3636 )
| Most Active Art Unit | 3636 |
| Art Unit(s) | 3624, 3636, 3507, 2899 |
| Total Applications | 4348 |
| Issued Applications | 3635 |
| Pending Applications | 235 |
| Abandoned Applications | 521 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 13444103
[patent_doc_number] => 20180273594
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-09-27
[patent_title] => TREATMENT OF RETINITIS PIGMENTOSA
[patent_app_type] => utility
[patent_app_number] => 15/549627
[patent_app_country] => US
[patent_app_date] => 2016-09-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 28062
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -10
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15549627
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/549627 | TREATMENT OF RETINITIS PIGMENTOSA | Sep 8, 2016 | Abandoned |
Array
(
[id] => 13397589
[patent_doc_number] => 20180250337
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-09-06
[patent_title] => GENETICALLY ENGINEERED DRUG RESISTANT T CELLS AND METHODS OF USING THE SAME
[patent_app_type] => utility
[patent_app_number] => 15/756937
[patent_app_country] => US
[patent_app_date] => 2016-09-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 14752
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -27
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15756937
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/756937 | Genetically engineered drug resistant T cells and methods of using the same | Sep 5, 2016 | Issued |
Array
(
[id] => 13444987
[patent_doc_number] => 20180274036
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-09-27
[patent_title] => METHODS AND COMPOSITIONS FOR DETECTING RISK OF CANCER RELAPSE
[patent_app_type] => utility
[patent_app_number] => 15/756845
[patent_app_country] => US
[patent_app_date] => 2016-09-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 21260
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -23
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15756845
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/756845 | Methods and compositions for detecting risk of cancer relapse | Sep 1, 2016 | Issued |
Array
(
[id] => 17466727
[patent_doc_number] => 11273184
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-03-15
[patent_title] => Bacteria engineered to treat disorders in which oxalate is detrimental
[patent_app_type] => utility
[patent_app_number] => 15/755836
[patent_app_country] => US
[patent_app_date] => 2016-08-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 43
[patent_figures_cnt] => 52
[patent_no_of_words] => 77685
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 72
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15755836
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/755836 | Bacteria engineered to treat disorders in which oxalate is detrimental | Aug 30, 2016 | Issued |
Array
(
[id] => 11336923
[patent_doc_number] => 20160362679
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-12-15
[patent_title] => 'Immunoglobulin Variable Region Libraries'
[patent_app_type] => utility
[patent_app_number] => 15/248413
[patent_app_country] => US
[patent_app_date] => 2016-08-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 2
[patent_figures_cnt] => 2
[patent_no_of_words] => 11276
[patent_no_of_claims] => 6
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15248413
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/248413 | Immunoglobulin variable region libraries | Aug 25, 2016 | Issued |
Array
(
[id] => 13357397
[patent_doc_number] => 20180230238
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-08-16
[patent_title] => ENHANCED PRODUCTION OF IMMUNOGLOBULINS
[patent_app_type] => utility
[patent_app_number] => 15/751015
[patent_app_country] => US
[patent_app_date] => 2016-08-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12683
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -39
[patent_words_short_claim] => 42
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15751015
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/751015 | ENHANCED PRODUCTION OF IMMUNOGLOBULINS | Aug 23, 2016 | Abandoned |
Array
(
[id] => 17681023
[patent_doc_number] => 11365262
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-06-21
[patent_title] => Cell
[patent_app_type] => utility
[patent_app_number] => 15/753505
[patent_app_country] => US
[patent_app_date] => 2016-08-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 18
[patent_figures_cnt] => 15
[patent_no_of_words] => 13675
[patent_no_of_claims] => 19
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 47
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15753505
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/753505 | Cell | Aug 18, 2016 | Issued |
Array
(
[id] => 13386413
[patent_doc_number] => 20180244748
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-08-30
[patent_title] => Modified Monocytes/Macrophage Expressing Chimeric Antigen Receptors and Uses Thereof
[patent_app_type] => utility
[patent_app_number] => 15/747555
[patent_app_country] => US
[patent_app_date] => 2016-07-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 30451
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -27
[patent_words_short_claim] => 46
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15747555
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/747555 | Modified monocytes/macrophage expressing chimeric antigen receptors and uses thereof | Jul 27, 2016 | Issued |
Array
(
[id] => 11691208
[patent_doc_number] => 20170166923
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-06-15
[patent_title] => 'PROTEIN EXPRESSION FROM MULTIPLE NUCLEIC ACIDS'
[patent_app_type] => utility
[patent_app_number] => 15/221481
[patent_app_country] => US
[patent_app_date] => 2016-07-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 9
[patent_figures_cnt] => 9
[patent_no_of_words] => 18134
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15221481
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/221481 | PROTEIN EXPRESSION FROM MULTIPLE NUCLEIC ACIDS | Jul 26, 2016 | Abandoned |
Array
(
[id] => 13841177
[patent_doc_number] => 20190024073
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2019-01-24
[patent_title] => EDITING MITOCHONDRIAL DNA
[patent_app_type] => utility
[patent_app_number] => 15/746912
[patent_app_country] => US
[patent_app_date] => 2016-07-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 11468
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -44
[patent_words_short_claim] => 28
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15746912
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/746912 | EDITING MITOCHONDRIAL DNA | Jul 21, 2016 | Abandoned |
Array
(
[id] => 13325899
[patent_doc_number] => 20180214487
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-08-02
[patent_title] => PD-L1 EXPRESSING HEMATOPOIETIC STEM CELLS AND USES
[patent_app_type] => utility
[patent_app_number] => 15/745553
[patent_app_country] => US
[patent_app_date] => 2016-07-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 40125
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15745553
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/745553 | PD-L1 EXPRESSING HEMATOPOIETIC STEM CELLS AND USES | Jul 19, 2016 | Abandoned |
Array
(
[id] => 13300305
[patent_doc_number] => 20180201689
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-07-19
[patent_title] => Antibody Fusion Protein and Preparation Method and Use Thereof
[patent_app_type] => utility
[patent_app_number] => 15/745031
[patent_app_country] => US
[patent_app_date] => 2016-06-30
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 2673
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 68
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15745031
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/745031 | Antibody Fusion Protein and Preparation Method and Use Thereof | Jun 29, 2016 | Abandoned |
Array
(
[id] => 11457119
[patent_doc_number] => 20170051025
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-02-23
[patent_title] => 'Silk Proteins'
[patent_app_type] => utility
[patent_app_number] => 15/197541
[patent_app_country] => US
[patent_app_date] => 2016-06-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 23
[patent_figures_cnt] => 23
[patent_no_of_words] => 27220
[patent_no_of_claims] => 21
[patent_no_of_ind_claims] => 4
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15197541
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/197541 | Silk Proteins | Jun 28, 2016 | Abandoned |
Array
(
[id] => 11107911
[patent_doc_number] => 20160304882
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-10-20
[patent_title] => 'METHOD FOR PROPAGATING ADENOVIRAL VECTORS ENCODING INHIBITORY GENE PRODUCTS'
[patent_app_type] => utility
[patent_app_number] => 15/193280
[patent_app_country] => US
[patent_app_date] => 2016-06-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 13974
[patent_no_of_claims] => 26
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15193280
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/193280 | METHOD FOR PROPAGATING ADENOVIRAL VECTORS ENCODING INHIBITORY GENE PRODUCTS | Jun 26, 2016 | Abandoned |
Array
(
[id] => 12858082
[patent_doc_number] => 20180177868
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-06-28
[patent_title] => COMPOSITIONS FOR MODULATING AN XBP1 PATHWAY IN A KERATINOCYTE AND METHODS OF USE
[patent_app_type] => utility
[patent_app_number] => 15/738612
[patent_app_country] => US
[patent_app_date] => 2016-06-24
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 6769
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15738612
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/738612 | COMPOSITIONS FOR MODULATING AN XBP1 PATHWAY IN A KERATINOCYTE AND METHODS OF USE | Jun 23, 2016 | Abandoned |
Array
(
[id] => 15848223
[patent_doc_number] => 10639372
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-05-05
[patent_title] => Nucleic acid, medical nanoparticle, and pharmaceutical composition thereof
[patent_app_type] => utility
[patent_app_number] => 15/184481
[patent_app_country] => US
[patent_app_date] => 2016-06-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 20
[patent_no_of_words] => 9578
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 57
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15184481
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/184481 | Nucleic acid, medical nanoparticle, and pharmaceutical composition thereof | Jun 15, 2016 | Issued |
Array
(
[id] => 11471480
[patent_doc_number] => 20170058263
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2017-03-02
[patent_title] => 'Cardiomyocytes From Induced Pluripotent Stem Cells From Patients and Methods of Use Thereof'
[patent_app_type] => utility
[patent_app_number] => 15/179051
[patent_app_country] => US
[patent_app_date] => 2016-06-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 34
[patent_figures_cnt] => 34
[patent_no_of_words] => 25858
[patent_no_of_claims] => 24
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15179051
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/179051 | Cardiomyocytes From Induced Pluripotent Stem Cells From Patients and Methods of Use Thereof | Jun 9, 2016 | Abandoned |
Array
(
[id] => 17756287
[patent_doc_number] => 11396571
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-07-26
[patent_title] => Polymers including galactose based blocks and uses thereof
[patent_app_type] => utility
[patent_app_number] => 15/166634
[patent_app_country] => US
[patent_app_date] => 2016-05-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 14
[patent_figures_cnt] => 20
[patent_no_of_words] => 9093
[patent_no_of_claims] => 17
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 18
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15166634
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/166634 | Polymers including galactose based blocks and uses thereof | May 26, 2016 | Issued |
Array
(
[id] => 11270781
[patent_doc_number] => 20160333326
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-11-17
[patent_title] => 'Bacteria Engineered to Treat Diseases Associated with Hyperammonemia'
[patent_app_type] => utility
[patent_app_number] => 15/164828
[patent_app_country] => US
[patent_app_date] => 2016-05-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 113
[patent_figures_cnt] => 113
[patent_no_of_words] => 102571
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15164828
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/164828 | Bacteria engineered to treat diseases associated with hyperammonemia | May 24, 2016 | Issued |
Array
(
[id] => 11270781
[patent_doc_number] => 20160333326
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2016-11-17
[patent_title] => 'Bacteria Engineered to Treat Diseases Associated with Hyperammonemia'
[patent_app_type] => utility
[patent_app_number] => 15/164828
[patent_app_country] => US
[patent_app_date] => 2016-05-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 113
[patent_figures_cnt] => 113
[patent_no_of_words] => 102571
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 0
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15164828
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/164828 | Bacteria engineered to treat diseases associated with hyperammonemia | May 24, 2016 | Issued |