
Nancy J. Leith
Examiner (ID: 12198, Phone: (313)446-4874 , Office: P/1636 )
| Most Active Art Unit | 1636 |
| Art Unit(s) | 1636, 1811, 1815, 1941, 1805 |
| Total Applications | 1445 |
| Issued Applications | 999 |
| Pending Applications | 194 |
| Abandoned Applications | 284 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
| 16/740421 | METHODS FOR INCREASING RNA-DIRECTED EDITING EFFICIENCIES IN CELL POPULATIONS | Jan 10, 2020 | Abandoned |
Array
(
[id] => 15931801
[patent_doc_number] => 20200157534
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-05-21
[patent_title] => METHODS AND SYSTEMS FOR CONDITIONALLY REGULATING GENE EXPRESSION
[patent_app_type] => utility
[patent_app_number] => 16/739400
[patent_app_country] => US
[patent_app_date] => 2020-01-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 78991
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -28
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16739400
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/739400 | METHODS AND SYSTEMS FOR CONDITIONALLY REGULATING GENE EXPRESSION | Jan 9, 2020 | Abandoned |
Array
(
[id] => 17236881
[patent_doc_number] => 11180753
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-11-23
[patent_title] => HTP genomic engineering platform for improving fungal strains
[patent_app_type] => utility
[patent_app_number] => 16/723594
[patent_app_country] => US
[patent_app_date] => 2019-12-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 80
[patent_figures_cnt] => 88
[patent_no_of_words] => 100823
[patent_no_of_claims] => 30
[patent_no_of_ind_claims] => 3
[patent_words_short_claim] => 243
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16723594
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/723594 | HTP genomic engineering platform for improving fungal strains | Dec 19, 2019 | Issued |
Array
(
[id] => 16073001
[patent_doc_number] => 20200190487
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-06-18
[patent_title] => CRISPR-ASSOCIATED TRANSPOSASE SYSTEMS AND METHODS OF USE THEREOF
[patent_app_type] => utility
[patent_app_number] => 16/717713
[patent_app_country] => US
[patent_app_date] => 2019-12-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 170264
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -26
[patent_words_short_claim] => 60
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16717713
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/717713 | CRISPR-associated transposase systems and methods of use thereof | Dec 16, 2019 | Issued |
Array
(
[id] => 20109402
[patent_doc_number] => 12360114
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-07-15
[patent_title] => Methods and compositions for protein sequencing
[patent_app_type] => utility
[patent_app_number] => 16/709024
[patent_app_country] => US
[patent_app_date] => 2019-12-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 77
[patent_figures_cnt] => 90
[patent_no_of_words] => 42219
[patent_no_of_claims] => 22
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 124
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16709024
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/709024 | Methods and compositions for protein sequencing | Dec 9, 2019 | Issued |
Array
(
[id] => 15963653
[patent_doc_number] => 20200165578
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-05-28
[patent_title] => PICHINDE VIRUS REVERSE GENETICS SYSTEMS AND METHODS OF USE
[patent_app_type] => utility
[patent_app_number] => 16/708825
[patent_app_country] => US
[patent_app_date] => 2019-12-10
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 21059
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -44
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16708825
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/708825 | Pichinde virus reverse genetics systems and methods of use | Dec 9, 2019 | Issued |
Array
(
[id] => 16073221
[patent_doc_number] => 20200190597
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-06-18
[patent_title] => IDENTIFICATION OF TUMORS
[patent_app_type] => utility
[patent_app_number] => 16/701000
[patent_app_country] => US
[patent_app_date] => 2019-12-02
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 36834
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 69
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16701000
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/701000 | IDENTIFICATION OF TUMORS | Dec 1, 2019 | Abandoned |
Array
(
[id] => 16053275
[patent_doc_number] => 20200188492
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-06-18
[patent_title] => METHODS FOR INCREASING INTRACELLULAR ACTIVITY OF HSP70
[patent_app_type] => utility
[patent_app_number] => 16/698473
[patent_app_country] => US
[patent_app_date] => 2019-11-27
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 36444
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 102
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16698473
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/698473 | METHODS FOR INCREASING INTRACELLULAR ACTIVITY OF HSP70 | Nov 26, 2019 | Abandoned |
Array
(
[id] => 19521320
[patent_doc_number] => 12123032
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-10-22
[patent_title] => CRISPR enzyme mutations reducing off-target effects
[patent_app_type] => utility
[patent_app_number] => 16/697018
[patent_app_country] => US
[patent_app_date] => 2019-11-26
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 71
[patent_figures_cnt] => 71
[patent_no_of_words] => 249868
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 68
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16697018
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/697018 | CRISPR enzyme mutations reducing off-target effects | Nov 25, 2019 | Issued |
Array
(
[id] => 17385926
[patent_doc_number] => 20220033778
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-02-03
[patent_title] => METHODS FOR EX VIVO EXPANSION OF NATURAL KILLER CELLS AND USE THEREOF
[patent_app_type] => utility
[patent_app_number] => 17/309426
[patent_app_country] => US
[patent_app_date] => 2019-11-21
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24418
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -77
[patent_words_short_claim] => 67
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17309426
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/309426 | METHODS FOR EX VIVO EXPANSION OF NATURAL KILLER CELLS AND USE THEREOF | Nov 20, 2019 | Pending |
Array
(
[id] => 16298100
[patent_doc_number] => 20200283823
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-09-10
[patent_title] => TAGGING NUCLEIC ACIDS FOR SEQUENCE ASSEMBLY
[patent_app_type] => utility
[patent_app_number] => 16/685855
[patent_app_country] => US
[patent_app_date] => 2019-11-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 64595
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -22
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16685855
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/685855 | Tagging nucleic acids for sequence assembly | Nov 14, 2019 | Issued |
Array
(
[id] => 18182525
[patent_doc_number] => 20230043255
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-02-09
[patent_title] => FUSOSOME COMPOSITIONS FOR T CELL DELIVERY
[patent_app_type] => utility
[patent_app_number] => 17/293802
[patent_app_country] => US
[patent_app_date] => 2019-11-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 123294
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -49
[patent_words_short_claim] => 57
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17293802
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/293802 | FUSOSOME COMPOSITIONS FOR T CELL DELIVERY | Nov 13, 2019 | Pending |
Array
(
[id] => 17336386
[patent_doc_number] => 20220002717
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-01-06
[patent_title] => PROGRAMMABLE NUCLEASES AND BASE EDITORS FOR MODIFYING NUCLEIC ACID DUPLEXES
[patent_app_type] => utility
[patent_app_number] => 17/290968
[patent_app_country] => US
[patent_app_date] => 2019-11-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 10736
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -15
[patent_words_short_claim] => 150
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17290968
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/290968 | PROGRAMMABLE NUCLEASES AND BASE EDITORS FOR MODIFYING NUCLEIC ACID DUPLEXES | Nov 7, 2019 | Abandoned |
Array
(
[id] => 17292540
[patent_doc_number] => 20210388379
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-12-16
[patent_title] => MODIFIED CLOSED-ENDED DNA (CEDNA) COMPRISING SYMMETRICAL MODIFIED INVERTED TERMINAL REPEATS
[patent_app_type] => utility
[patent_app_number] => 17/290787
[patent_app_country] => US
[patent_app_date] => 2019-11-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 68458
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -58
[patent_words_short_claim] => 24
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17290787
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/290787 | MODIFIED CLOSED-ENDED DNA (CEDNA) COMPRISING SYMMETRICAL MODIFIED INVERTED TERMINAL REPEATS | Nov 7, 2019 | Abandoned |
Array
(
[id] => 17207761
[patent_doc_number] => 11168120
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-11-09
[patent_title] => Methods and reagents for treatment of age-related macular degeneration
[patent_app_type] => utility
[patent_app_number] => 16/676145
[patent_app_country] => US
[patent_app_date] => 2019-11-06
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 23
[patent_no_of_words] => 53536
[patent_no_of_claims] => 12
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 83
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16676145
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/676145 | Methods and reagents for treatment of age-related macular degeneration | Nov 5, 2019 | Issued |
Array
(
[id] => 18933396
[patent_doc_number] => 11885813
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-01-30
[patent_title] => Methods of diagnosing and predicting renal disease
[patent_app_type] => utility
[patent_app_number] => 16/671256
[patent_app_country] => US
[patent_app_date] => 2019-11-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 4
[patent_figures_cnt] => 13
[patent_no_of_words] => 9396
[patent_no_of_claims] => 13
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 198
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16671256
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/671256 | Methods of diagnosing and predicting renal disease | Oct 31, 2019 | Issued |
Array
(
[id] => 16269193
[patent_doc_number] => 20200270680
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-08-27
[patent_title] => METHODS FOR ANALYZING NUCLEIC ACID SEQUENCES
[patent_app_type] => utility
[patent_app_number] => 16/671979
[patent_app_country] => US
[patent_app_date] => 2019-11-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 38847
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16671979
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/671979 | Methods for analyzing nucleic acid sequences | Oct 31, 2019 | Issued |
Array
(
[id] => 19731254
[patent_doc_number] => 12209245
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2025-01-28
[patent_title] => Synthetic gene clusters
[patent_app_type] => utility
[patent_app_number] => 16/671036
[patent_app_country] => US
[patent_app_date] => 2019-10-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 93
[patent_figures_cnt] => 51
[patent_no_of_words] => 24487
[patent_no_of_claims] => 18
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 142
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16671036
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/671036 | Synthetic gene clusters | Oct 30, 2019 | Issued |
Array
(
[id] => 16704590
[patent_doc_number] => 10954511
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2021-03-23
[patent_title] => HTP genomic engineering platform for improving fungal strains
[patent_app_type] => utility
[patent_app_number] => 16/600062
[patent_app_country] => US
[patent_app_date] => 2019-10-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 80
[patent_figures_cnt] => 88
[patent_no_of_words] => 100781
[patent_no_of_claims] => 23
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 319
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16600062
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/600062 | HTP genomic engineering platform for improving fungal strains | Oct 10, 2019 | Issued |
Array
(
[id] => 15816921
[patent_doc_number] => 10633627
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-04-28
[patent_title] => Instruments, modules, and methods for improved detection of edited sequences in live cells
[patent_app_type] => utility
[patent_app_number] => 16/597831
[patent_app_country] => US
[patent_app_date] => 2019-10-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 52
[patent_figures_cnt] => 78
[patent_no_of_words] => 56026
[patent_no_of_claims] => 20
[patent_no_of_ind_claims] => 2
[patent_words_short_claim] => 107
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16597831
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/597831 | Instruments, modules, and methods for improved detection of edited sequences in live cells | Oct 8, 2019 | Issued |