
Nancy J. Leith
Examiner (ID: 12198, Phone: (313)446-4874 , Office: P/1636 )
| Most Active Art Unit | 1636 |
| Art Unit(s) | 1636, 1811, 1815, 1941, 1805 |
| Total Applications | 1445 |
| Issued Applications | 999 |
| Pending Applications | 194 |
| Abandoned Applications | 284 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 17496509
[patent_doc_number] => 11285193
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-03-29
[patent_title] => Methods and compositions for RNA-guided treatment of HIV infection
[patent_app_type] => utility
[patent_app_number] => 15/882207
[patent_app_country] => US
[patent_app_date] => 2018-01-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 30
[patent_figures_cnt] => 68
[patent_no_of_words] => 22176
[patent_no_of_claims] => 8
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 177
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15882207
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/882207 | Methods and compositions for RNA-guided treatment of HIV infection | Jan 28, 2018 | Issued |
Array
(
[id] => 13369001
[patent_doc_number] => 20180236041
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-08-23
[patent_title] => METHODS AND COMPOSITIONS FOR RNA-GUIDED TREATMENT OF HIV INFECTION
[patent_app_type] => utility
[patent_app_number] => 15/882197
[patent_app_country] => US
[patent_app_date] => 2018-01-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22459
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -22
[patent_words_short_claim] => 82
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15882197
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/882197 | METHODS AND COMPOSITIONS FOR RNA-GUIDED TREATMENT OF HIV INFECTION | Jan 28, 2018 | Abandoned |
Array
(
[id] => 12832063
[patent_doc_number] => 20180169193
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-06-21
[patent_title] => METHODS AND COMPOSITIONS FOR RNA-GUIDED TREATMENT OF HIV INFECTION
[patent_app_type] => utility
[patent_app_number] => 15/879877
[patent_app_country] => US
[patent_app_date] => 2018-01-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22746
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -26
[patent_words_short_claim] => 82
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15879877
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/879877 | METHODS AND COMPOSITIONS FOR RNA-GUIDED TREATMENT OF HIV INFECTION | Jan 24, 2018 | Abandoned |
Array
(
[id] => 12729913
[patent_doc_number] => 20180135138
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-05-17
[patent_title] => METHOD FOR EVALUATING HEALTH CONDITION AND METHOD FOR PREDICTING LONG-TERM EFFICACY OF ANTICANCER AGENT
[patent_app_type] => utility
[patent_app_number] => 15/870190
[patent_app_country] => US
[patent_app_date] => 2018-01-12
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 12461
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 220
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15870190
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/870190 | METHOD FOR EVALUATING HEALTH CONDITION AND METHOD FOR PREDICTING LONG-TERM EFFICACY OF ANTICANCER AGENT | Jan 11, 2018 | Abandoned |
Array
(
[id] => 17741450
[patent_doc_number] => 11389495
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-07-19
[patent_title] => Combination method for treatment of cancer
[patent_app_type] => utility
[patent_app_number] => 15/868805
[patent_app_country] => US
[patent_app_date] => 2018-01-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 44
[patent_figures_cnt] => 43
[patent_no_of_words] => 17681
[patent_no_of_claims] => 42
[patent_no_of_ind_claims] => 11
[patent_words_short_claim] => 52
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15868805
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/868805 | Combination method for treatment of cancer | Jan 10, 2018 | Issued |
Array
(
[id] => 13729751
[patent_doc_number] => 20180369343
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-27
[patent_title] => SYSTEMIC GENE REPLACEMENT THERAPY FOR TREATMENT OF X-LINKED MYOTUBULAR MYOPATHY (XLMTM)
[patent_app_type] => utility
[patent_app_number] => 15/856653
[patent_app_country] => US
[patent_app_date] => 2017-12-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 29156
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -40
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15856653
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/856653 | Systemic gene replacement therapy for treatment of X-linked myotubular myopathy (XLMTM) | Dec 27, 2017 | Issued |
Array
(
[id] => 13729751
[patent_doc_number] => 20180369343
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-27
[patent_title] => SYSTEMIC GENE REPLACEMENT THERAPY FOR TREATMENT OF X-LINKED MYOTUBULAR MYOPATHY (XLMTM)
[patent_app_type] => utility
[patent_app_number] => 15/856653
[patent_app_country] => US
[patent_app_date] => 2017-12-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 29156
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -40
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15856653
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/856653 | Systemic gene replacement therapy for treatment of X-linked myotubular myopathy (XLMTM) | Dec 27, 2017 | Issued |
Array
(
[id] => 13729751
[patent_doc_number] => 20180369343
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-27
[patent_title] => SYSTEMIC GENE REPLACEMENT THERAPY FOR TREATMENT OF X-LINKED MYOTUBULAR MYOPATHY (XLMTM)
[patent_app_type] => utility
[patent_app_number] => 15/856653
[patent_app_country] => US
[patent_app_date] => 2017-12-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 29156
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -40
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15856653
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/856653 | Systemic gene replacement therapy for treatment of X-linked myotubular myopathy (XLMTM) | Dec 27, 2017 | Issued |
Array
(
[id] => 13729751
[patent_doc_number] => 20180369343
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-12-27
[patent_title] => SYSTEMIC GENE REPLACEMENT THERAPY FOR TREATMENT OF X-LINKED MYOTUBULAR MYOPATHY (XLMTM)
[patent_app_type] => utility
[patent_app_number] => 15/856653
[patent_app_country] => US
[patent_app_date] => 2017-12-28
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 29156
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -40
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15856653
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/856653 | Systemic gene replacement therapy for treatment of X-linked myotubular myopathy (XLMTM) | Dec 27, 2017 | Issued |
Array
(
[id] => 19564954
[patent_doc_number] => 12139716
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2024-11-12
[patent_title] => Composition for editing a nucleic acid sequence and method using the same
[patent_app_type] => utility
[patent_app_number] => 16/472274
[patent_app_country] => US
[patent_app_date] => 2017-12-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 11
[patent_figures_cnt] => 14
[patent_no_of_words] => 5160
[patent_no_of_claims] => 16
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 154
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16472274
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/472274 | Composition for editing a nucleic acid sequence and method using the same | Dec 19, 2017 | Issued |
Array
(
[id] => 12886021
[patent_doc_number] => 20180187182
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-07-05
[patent_title] => DIRECTED EVOLUTION THROUGH MUTATION RATE MODULATION
[patent_app_type] => utility
[patent_app_number] => 15/848029
[patent_app_country] => US
[patent_app_date] => 2017-12-20
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5079
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 119
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15848029
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/848029 | Directed evolution through mutation rate modulation | Dec 19, 2017 | Issued |
Array
(
[id] => 15931751
[patent_doc_number] => 20200157509
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2020-05-21
[patent_title] => TARGETED INTEGRATION SITES IN CHINESE HAMSTER OVARY CELL GENOME
[patent_app_type] => utility
[patent_app_number] => 16/472108
[patent_app_country] => US
[patent_app_date] => 2017-12-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 3544
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -25
[patent_words_short_claim] => 46
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16472108
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/472108 | Targeted integration sites in Chinese hamster ovary cell genome | Dec 18, 2017 | Issued |
Array
(
[id] => 12625113
[patent_doc_number] => 20180100201
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-04-12
[patent_title] => TUMOR AND MICROENVIRONMENT GENE EXPRESSION, COMPOSITIONS OF MATTER AND METHODS OF USE THEREOF
[patent_app_type] => utility
[patent_app_number] => 15/844601
[patent_app_country] => US
[patent_app_date] => 2017-12-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 134236
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -161
[patent_words_short_claim] => 33
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15844601
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/844601 | TUMOR AND MICROENVIRONMENT GENE EXPRESSION, COMPOSITIONS OF MATTER AND METHODS OF USE THEREOF | Dec 16, 2017 | Abandoned |
Array
(
[id] => 15883375
[patent_doc_number] => 10648020
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-05-12
[patent_title] => CRISPR enzymes and systems
[patent_app_type] => utility
[patent_app_number] => 15/844608
[patent_app_country] => US
[patent_app_date] => 2017-12-17
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 345
[patent_figures_cnt] => 388
[patent_no_of_words] => 208244
[patent_no_of_claims] => 15
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 99
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15844608
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/844608 | CRISPR enzymes and systems | Dec 16, 2017 | Issued |
Array
(
[id] => 16533515
[patent_doc_number] => 10876100
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2020-12-29
[patent_title] => Crispr enzyme mutations reducing off-target effects
[patent_app_type] => utility
[patent_app_number] => 15/844528
[patent_app_country] => US
[patent_app_date] => 2017-12-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 71
[patent_figures_cnt] => 71
[patent_no_of_words] => 249698
[patent_no_of_claims] => 29
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 74
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15844528
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/844528 | Crispr enzyme mutations reducing off-target effects | Dec 15, 2017 | Issued |
Array
(
[id] => 17815651
[patent_doc_number] => 11421250
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2022-08-23
[patent_title] => CRISPR enzymes and systems
[patent_app_type] => utility
[patent_app_number] => 15/844530
[patent_app_country] => US
[patent_app_date] => 2017-12-16
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 348
[patent_figures_cnt] => 416
[patent_no_of_words] => 125916
[patent_no_of_claims] => 27
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 88
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15844530
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/844530 | CRISPR enzymes and systems | Dec 15, 2017 | Issued |
Array
(
[id] => 13537233
[patent_doc_number] => 20180320163
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-11-08
[patent_title] => NOVEL CRISPR ENZYMES AND SYSTEMS
[patent_app_type] => utility
[patent_app_number] => 15/842073
[patent_app_country] => US
[patent_app_date] => 2017-12-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 201001
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -75
[patent_words_short_claim] => 16
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15842073
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/842073 | CRISPR enzymes and systems | Dec 13, 2017 | Issued |
Array
(
[id] => 12707737
[patent_doc_number] => 20180127745
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-05-10
[patent_title] => CELL SORTING
[patent_app_type] => utility
[patent_app_number] => 15/842315
[patent_app_country] => US
[patent_app_date] => 2017-12-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 46974
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -37
[patent_words_short_claim] => 14
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15842315
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/842315 | Cell sorting | Dec 13, 2017 | Issued |
Array
(
[id] => 18202548
[patent_doc_number] => 11584931
[patent_country] => US
[patent_kind] => B2
[patent_issue_date] => 2023-02-21
[patent_title] => Methods and compositions for generating a deletion library and for identifying a defective interfering particle (DIP)
[patent_app_type] => utility
[patent_app_number] => 16/467233
[patent_app_country] => US
[patent_app_date] => 2017-12-14
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 51
[patent_figures_cnt] => 50
[patent_no_of_words] => 37022
[patent_no_of_claims] => 9
[patent_no_of_ind_claims] => 1
[patent_words_short_claim] => 119
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => patent
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 16467233
[rel_patent_id] =>[rel_patent_doc_number] =>) 16/467233 | Methods and compositions for generating a deletion library and for identifying a defective interfering particle (DIP) | Dec 13, 2017 | Issued |
Array
(
[id] => 13508323
[patent_doc_number] => 20180305704
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2018-10-25
[patent_title] => CRISPR-CAS COMPONENT SYSTEMS, METHODS AND COMPOSITIONS FOR SEQUENCE MANIPULATION
[patent_app_type] => utility
[patent_app_number] => 15/838064
[patent_app_country] => US
[patent_app_date] => 2017-12-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 52238
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -32
[patent_words_short_claim] => 92
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 15838064
[rel_patent_id] =>[rel_patent_doc_number] =>) 15/838064 | CRISPR-CAS COMPONENT SYSTEMS, METHODS AND COMPOSITIONS FOR SEQUENCE MANIPULATION | Dec 10, 2017 | Abandoned |