
Nathan H. Empie
Examiner (ID: 4423, Phone: (571)270-1886 , Office: P/1712 )
| Most Active Art Unit | 1712 |
| Art Unit(s) | 1792, 1712 |
| Total Applications | 896 |
| Issued Applications | 369 |
| Pending Applications | 105 |
| Abandoned Applications | 447 |
Applications
| Application number | Title of the application | Filing Date | Status |
|---|---|---|---|
Array
(
[id] => 16963192
[patent_doc_number] => 20210214691
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-07-15
[patent_title] => Delta133P53Beta and Delta133P53Gamma Isoforms Are Biomarkers of Cancer Stem Cells
[patent_app_type] => utility
[patent_app_number] => 17/166004
[patent_app_country] => US
[patent_app_date] => 2021-02-03
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22943
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17166004
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/166004 | Delta133P53Beta and Delta133P53Gamma isoforms are biomarkers of cancer stem cells | Feb 2, 2021 | Issued |
Array
(
[id] => 18278670
[patent_doc_number] => 20230094142
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-03-30
[patent_title] => METHODS OF DIAGNOSING AND CLASSIFYING VIRAL INFECTIONS
[patent_app_type] => utility
[patent_app_number] => 17/796284
[patent_app_country] => US
[patent_app_date] => 2021-01-29
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 38133
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17796284
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/796284 | METHODS OF DIAGNOSING AND CLASSIFYING VIRAL INFECTIONS | Jan 28, 2021 | Pending |
Array
(
[id] => 18251291
[patent_doc_number] => 20230078330
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-03-16
[patent_title] => HUMAN ANTI-DENGUE ANTIBODIES AND METHODS OF USE THEREFOR
[patent_app_type] => utility
[patent_app_number] => 17/759479
[patent_app_country] => US
[patent_app_date] => 2021-01-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 42031
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -88
[patent_words_short_claim] => 26
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17759479
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/759479 | HUMAN ANTI-DENGUE ANTIBODIES AND METHODS OF USE THEREFOR | Jan 18, 2021 | Pending |
Array
(
[id] => 17183927
[patent_doc_number] => 20210330812
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-10-28
[patent_title] => TREATMENT OF RETINAL DEGENERATION USING GENE THERAPY
[patent_app_type] => utility
[patent_app_number] => 17/152025
[patent_app_country] => US
[patent_app_date] => 2021-01-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 20365
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -25
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17152025
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/152025 | TREATMENT OF RETINAL DEGENERATION USING GENE THERAPY | Jan 18, 2021 | Abandoned |
Array
(
[id] => 16990273
[patent_doc_number] => 20210228693
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-07-29
[patent_title] => PRECISE DELETION OF CHROMOSOMAL SEQUENCES IN VIVO AND TREATMENT OF NUCLEOTIDE REPEAT EXPANSION DISORDERS USING ENGINEERED NUCLEASES
[patent_app_type] => utility
[patent_app_number] => 17/151075
[patent_app_country] => US
[patent_app_date] => 2021-01-15
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 35334
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17151075
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/151075 | PRECISE DELETION OF CHROMOSOMAL SEQUENCES IN VIVO AND TREATMENT OF NUCLEOTIDE REPEAT EXPANSION DISORDERS USING ENGINEERED NUCLEASES | Jan 14, 2021 | Abandoned |
Array
(
[id] => 16870420
[patent_doc_number] => 20210163887
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-06-03
[patent_title] => CELLS USEFUL FOR IMMUNO-BASED BOTULINUM TOXIN SEROTYPE A ACTIVITY ASSAYS
[patent_app_type] => utility
[patent_app_number] => 17/148278
[patent_app_country] => US
[patent_app_date] => 2021-01-13
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 61399
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -9
[patent_words_short_claim] => 37
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17148278
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/148278 | CELLS USEFUL FOR IMMUNO-BASED BOTULINUM TOXIN SEROTYPE A ACTIVITY ASSAYS | Jan 12, 2021 | Abandoned |
Array
(
[id] => 17214853
[patent_doc_number] => 20210348190
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-11-11
[patent_title] => ADENO-ASSOCIATED VIRUS (AAV) SEROTYPE 8 SEQUENCES, VECTORS CONTAINING SAME, AND USES THEREFOR
[patent_app_type] => utility
[patent_app_number] => 17/145844
[patent_app_country] => US
[patent_app_date] => 2021-01-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 20600
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => 0
[patent_words_short_claim] => 70
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17145844
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/145844 | ADENO-ASSOCIATED VIRUS (AAV) SEROTYPE 8 SEQUENCES, VECTORS CONTAINING SAME, AND USES THEREFOR | Jan 10, 2021 | Abandoned |
Array
(
[id] => 16825650
[patent_doc_number] => 20210140943
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-13
[patent_title] => NOVEL FUSIONS AND METHOD FOR DETECTING SAME
[patent_app_type] => utility
[patent_app_number] => 17/144776
[patent_app_country] => US
[patent_app_date] => 2021-01-08
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 24887
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -13
[patent_words_short_claim] => 26
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17144776
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/144776 | Fusions and method for detecting same | Jan 7, 2021 | Issued |
Array
(
[id] => 16824693
[patent_doc_number] => 20210139986
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-13
[patent_title] => COMPOSITIONS AND METHODS FOR ENHANCING ODORANT RECEPTOR ACTIVITY
[patent_app_type] => utility
[patent_app_number] => 17/139266
[patent_app_country] => US
[patent_app_date] => 2020-12-31
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 43589
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => 0
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17139266
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/139266 | COMPOSITIONS AND METHODS FOR ENHANCING ODORANT RECEPTOR ACTIVITY | Dec 30, 2020 | Abandoned |
Array
(
[id] => 18110839
[patent_doc_number] => 20230003719
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-01-05
[patent_title] => MATERIALS AND METHODS FOR INFLAMMATORY MOLECULAR MARKERS
[patent_app_type] => utility
[patent_app_number] => 17/757201
[patent_app_country] => US
[patent_app_date] => 2020-12-11
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 48900
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -198
[patent_words_short_claim] => 66
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17757201
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/757201 | MATERIALS AND METHODS FOR INFLAMMATORY MOLECULAR MARKERS | Dec 10, 2020 | Abandoned |
Array
(
[id] => 18170623
[patent_doc_number] => 20230037234
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-02-02
[patent_title] => ENGINEERED CELLS FOR PRODUCTION OF CANNABINOIDS AND OTHER MALONYL-CoA-DERIVED PRODUCTS
[patent_app_type] => utility
[patent_app_number] => 17/780421
[patent_app_country] => US
[patent_app_date] => 2020-11-25
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 30906
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17780421
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/780421 | ENGINEERED CELLS FOR PRODUCTION OF CANNABINOIDS AND OTHER MALONYL-CoA-DERIVED PRODUCTS | Nov 24, 2020 | Pending |
Array
(
[id] => 18164849
[patent_doc_number] => 20230031446
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-02-02
[patent_title] => SPLIT-ENZYME SYSTEM TO DETECT SPECIFIC DNA IN LIVING CELLS
[patent_app_type] => utility
[patent_app_number] => 17/778254
[patent_app_country] => US
[patent_app_date] => 2020-11-23
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 22294
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -17
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17778254
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/778254 | SPLIT-ENZYME SYSTEM TO DETECT SPECIFIC DNA IN LIVING CELLS | Nov 22, 2020 | Pending |
Array
(
[id] => 18483701
[patent_doc_number] => 20230211004
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2023-07-06
[patent_title] => TETANUS TOXOID AND CRM-BASED PEPTIDES AND METHODS OF USE
[patent_app_type] => utility
[patent_app_number] => 17/778211
[patent_app_country] => US
[patent_app_date] => 2020-11-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 21849
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -16
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17778211
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/778211 | TETANUS TOXOID AND CRM-BASED PEPTIDES AND METHODS OF USE | Nov 21, 2020 | Pending |
Array
(
[id] => 17127668
[patent_doc_number] => 20210302437
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-09-30
[patent_title] => TRANSCRIPTOMIC BIOMARKER OF MYOCARDITIS
[patent_app_type] => utility
[patent_app_number] => 17/092468
[patent_app_country] => US
[patent_app_date] => 2020-11-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 23396
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -3
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17092468
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/092468 | TRANSCRIPTOMIC BIOMARKER OF MYOCARDITIS | Nov 8, 2020 | Abandoned |
Array
(
[id] => 16824616
[patent_doc_number] => 20210139909
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-05-13
[patent_title] => SDF-1 Binding Nucleic Acids
[patent_app_type] => utility
[patent_app_number] => 17/092390
[patent_app_country] => US
[patent_app_date] => 2020-11-09
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 31498
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -19
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17092390
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/092390 | SDF-1 Binding Nucleic Acids | Nov 8, 2020 | Abandoned |
Array
(
[id] => 16977961
[patent_doc_number] => 20210222198
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-07-22
[patent_title] => FURTHER IMPROVED AAV VECTORS PRODUCED IN INSECT CELLS
[patent_app_type] => utility
[patent_app_number] => 17/090807
[patent_app_country] => US
[patent_app_date] => 2020-11-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 16987
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 131
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17090807
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/090807 | Further improved AAV vectors produced in insect cells | Nov 4, 2020 | Issued |
Array
(
[id] => 16688356
[patent_doc_number] => 20210070832
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-03-11
[patent_title] => ANTIGEN-SPECIFIC HELPER T-CELL RECEPTOR GENES
[patent_app_type] => utility
[patent_app_number] => 17/076842
[patent_app_country] => US
[patent_app_date] => 2020-10-22
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 9372
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -1
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17076842
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/076842 | ANTIGEN-SPECIFIC HELPER T-CELL RECEPTOR GENES | Oct 21, 2020 | Abandoned |
Array
(
[id] => 16614011
[patent_doc_number] => 20210032664
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-02-04
[patent_title] => ENGINEERED MEGANUCLEASES WITH RECOGNITION SEQUENCES FOUND IN THE HUMAN BETA-2 MICROGLOBULIN GENE
[patent_app_type] => utility
[patent_app_number] => 17/074135
[patent_app_country] => US
[patent_app_date] => 2020-10-19
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 33157
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 67
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17074135
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/074135 | ENGINEERED MEGANUCLEASES WITH RECOGNITION SEQUENCES FOUND IN THE HUMAN BETA-2 MICROGLOBULIN GENE | Oct 18, 2020 | Abandoned |
Array
(
[id] => 18020980
[patent_doc_number] => 20220372479
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2022-11-24
[patent_title] => Oligonucleotide based ex vivo cell therapy
[patent_app_type] => utility
[patent_app_number] => 17/765170
[patent_app_country] => US
[patent_app_date] => 2020-10-05
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 5980
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -14
[patent_words_short_claim] => 159
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17765170
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/765170 | Oligonucleotide based ex vivo cell therapy | Oct 4, 2020 | Abandoned |
Array
(
[id] => 16886739
[patent_doc_number] => 20210172935
[patent_country] => US
[patent_kind] => A1
[patent_issue_date] => 2021-06-10
[patent_title] => IN VITRO MODEL FOR PATHOLOGICAL OR PHYSIOLOGIC CONDITIONS
[patent_app_type] => utility
[patent_app_number] => 17/060933
[patent_app_country] => US
[patent_app_date] => 2020-10-01
[patent_effective_date] => 0000-00-00
[patent_drawing_sheets_cnt] => 0
[patent_figures_cnt] => 0
[patent_no_of_words] => 31764
[patent_no_of_claims] => 0
[patent_no_of_ind_claims] => -18
[patent_words_short_claim] => 2
[patent_maintenance] => 1
[patent_no_of_assignments] => 0
[patent_current_assignee] =>[type] => publication
[pdf_file] =>[firstpage_image] =>[orig_patent_app_number] => 17060933
[rel_patent_id] =>[rel_patent_doc_number] =>) 17/060933 | IN VITRO MODEL FOR PATHOLOGICAL OR PHYSIOLOGIC CONDITIONS | Sep 30, 2020 | Abandoned |